MicroRNAs (miRNAs) are important molecular regulatorsof cellular signaling and behavior. They alter gene expression by targeting messenger RNAs, including those encoding transcriptional regulators, such as HMGA2. While HMGA2 is oncogenic in various tumors, miRNAs may be oncogenic or tumor suppressive. Here, we investigate the expression of HMGA2 and the miRNA miR-330 in a patient with colorectal cancer (CRC) samples and their effects on oncogenic cellular phenotypes. We found that HMGA2 expression is increased and miR-330 expression is decreased in CRCs and each predicts poor long-term patient survival. Stably increased miR-330 expression in human colorectal cancer cells (HCT116) and SW480 CRC cell lines downregulate the oncogenic expression of HMGA2, a predicted miR-330 target. Additionally, this promotes apoptosis and decreases cell migration and viability. Consistently, it also decreases protein-level expression of markers for epithelial-to-mesenchymal-transition (Snail-1, E-cadherin, and Vascular endothelial growth factor receptors) and transforming growth factor β signaling (SMAD3), as well as phospho- Protein kinase B (AKT) and phospho-STAT3 levels. We conclude that miR-330 acts as a tumor suppressor miRNA in CRC by suppressing HMGA2 expression and reducing cell survival, proliferation, and migration. Thus, we identify miR-330 as a promising candidate for miRNA replacement therapy for patients with CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.29007 | DOI Listing |
Ann Surg Oncol
January 2025
Department Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFTech Coloproctol
January 2025
Colorectal Surgery Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona UAB, Barcelona, Spain.
Background: Patients with rectal cancer often experience adverse effects on urinary, sexual, and digestive functions. Despite recognised impacts and available treatments, they are not fully integrated into follow-up protocols, thereby hindering appropriate interventions. The aim of the study was to discern the activities conducted in our routine clinical practice outside of clinical trials.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.
View Article and Find Full Text PDFSci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!