Fabry disease (FD) is an X-linked inherited disease and occurs due to mutations in GLA gene that encodes the α-galactosidase enzyme. Consequently, there is an accumulation of enzyme substrates, namely globotriaosylceramide (GB3). FD is a multisystemic disease, caused by storage of GB3 in vascular endothelia, with significant renal, cardiac and vascular involvement. The aim of this work was to evaluate the in vitro effect of GB3 on electron transport chain complexes (ETC) and redox parameters. Biochemical biomarkers were determined in homogenates of cerebral cortex, kidneys and liver of Wistar rats in the presence or absence of GB3 at concentrations of 3, 6, 9 and 12 mg/L. We found that GB3 caused an increase of ETC complexes II and IV activities, increased production of reactive species and decreased superoxide dismutase enzyme activity in homogenates of cerebral cortex. As well also increased production of reactive species and superoxide dismutase activity in kidney homogenates. The results obtained in our work suggest that GB3 interferes in ETC complexes II and IV activities, however, the magnitude of this increase seems to be too low to present a physiologically importance. However, the imbalance in cellular redox state indicating that these alterations may be involved in the pathophysiology of FD, mainly in renal and cerebral manifestations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765201920181373 | DOI Listing |
Langmuir
January 2025
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.
View Article and Find Full Text PDFPLoS One
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.
Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, University of Twente, Zuidhorst 28, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients' blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!