Since 1996, PulseNet has served as the national laboratory-based surveillance system for the rapid detection of outbreaks caused by foodborne bacterial pathogens in the United States. For the past two decades, pulsed-field gel electrophoresis was the gold standard subtyping method for the pathogens tracked by PulseNet. A new gold standard is now being implemented with the introduction of cost-effective whole genome sequencing (WGS) for analysis of all the organisms tracked by PulseNet. This transformation is a major undertaking that touches every functional aspect of PulseNet, including laboratory workflows, data storage, analysis management and data interpretation, and language used to communicate information (sequence profile nomenclature system). The benefits of implementing WGS go beyond improved discrimination and precision of the data; it provides an opportunity to determine strain characteristics typically obtained through resource-intensive traditional methodologies, for example, species identification, serotyping, virulence, and antimicrobial resistance profiling, all of which can be consolidated into a single WGS workflow. Such a strategy represents a major shift in the workflows currently practiced in most public health laboratories, but one that brings opportunities for streamlining surveillance activities for the network as a whole. In this study, we provide a brief summary of PulseNet's evolution the past decade along with a general description of the challenges and opportunities that lie ahead.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653803 | PMC |
http://dx.doi.org/10.1089/fpd.2019.2634 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Radiology, Yale School of Medicine, New Haven, CT.
Background: Vestibular schwannoma (VS) is a common intracranial tumor that affects patients' quality of life. Reliable imaging techniques for tumor volume assessment are essential for guiding management decisions. The study aimed to compare the ABC/2 method to the gold standard planimetry method for volumetric assessment of VS.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.
Study Design: Retrospective case review.
Setting: Tertiary referral center.
PLoS Negl Trop Dis
January 2025
Centro de Investigaciones Epidemiológica y Salud Pública (CIESP-IECS) CONICET.
Background: Trypanosoma cruzi is a protozoan parasite which causes Chagas disease. Mother-to-child transmission is the main route of transmission in vector-free areas. Congenital Chagas disease refers specifically to cases arising from this route of transmission.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!