New Targeted Treatments for Fragile X Syndrome.

Curr Pediatr Rev

Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, United States.

Published: June 2020

Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5' untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930353PMC
http://dx.doi.org/10.2174/1573396315666190625110748DOI Listing

Publication Analysis

Top Keywords

fragile syndrome
8
intellectual disability
8
fragile mental
8
mental retardation
8
fmr1 gene
8
fxs
5
targeted treatments
4
fragile
4
treatments fragile
4
syndrome fragile
4

Similar Publications

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

Different faces of autism: Patients with mutations in and genes.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

Autism spectrum disorder (ASD) is among the most common neurodevelopmental conditions in humans. While public awareness of the challenges faced by individuals with autism is steadily increasing, the underlying causes of abnormalities observed in ASD remains incompletely understood. The autism spectrum is notably broad, with symptoms that can manifest in various forms and degrees of severity.

View Article and Find Full Text PDF

Trichohepatoenteric syndrome (THES) is a rare genetic disorder inherited in an autosomal recessive manner. THES primarily leads to neonatal enteropathy, typically manifesting as severe, persistent diarrhea, distinctive facial features such as frontal bossing and a broad flat nasal bridge, woolly and fragile hair, immunodeficiency resulting in recurrent infections, failure to thrive (FTT), and liver complications including fibrosis or cirrhosis. This multisystem disorder is linked to mutations in the tetratricopeptide repeat domain 37 (TTC37) gene, also known as superkiller complex (SKIC) protein 3, responsible for THES type 1, and the Ski2-like ribonucleic acid (RNA) helicase (SKIV2L) gene, also known as SKIC2, responsible for THES type 2.

View Article and Find Full Text PDF

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

Background: Critical analysis of studies with high level of evidence has relied on the significance set by the reported values. However, this strategy steers readers toward categorical interpretation of the data; therefore, a more comprehensive approach of data analysis is warranted. The continuous fragility index (CFI) allows for frailty interpretation of any given study's continuous outcome results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!