Objective: Elevated intracellular cAMP concentrations potentiate insulin secretion from pancreatic β cells. Phosphodiesterase 3B (PDE3B) is highly expressed in these cells and plays a role in the regulation of insulin secretion.

Materials And Methods: In this study, effects of amrinone, an inhibitor of PDE3B on insulin release from isolated pancreatic islets, were determined.

Results: Exposure of islets to amrinone for 15, 30 and 90 min markedly increased secretion induced by 6.7 mM glucose. Amrinone enhanced also secretion stimulated by 6.7 mM glucose and DB-cAMP, an activator of PKA. It was also demonstrated that amrinone potentiated insulin secretion induced by 6.7 mM glucose in the combination with PMA (activator of PKC) or acetylcholine. However, the insulin-secretory response to glucose and glibenclamide was unchanged by amrinone.

Conclusions: These results indicate that amrinone is capable of increasing insulin secretion; however, its action is restricted.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13813455.2019.1628071DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
67 mm glucose
12
pancreatic islets
8
secretion induced
8
induced 67 mm
8
insulin
6
secretion
6
amrinone
5
effects inhibition
4
inhibition phosphodiesterase
4

Similar Publications

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Glucokinase: from allosteric glucose sensing to disease variants.

Trends Biochem Sci

January 2025

Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark. Electronic address:

Human glucokinase (GCK) functions as a glucose sensor in the pancreas and liver, where GCK activity regulates insulin secretion and glycogen synthesis, respectively. GCK's low affinity for glucose and the sigmoidal substrate dependency of enzymatic turnover enables it to act as a sensor that makes cells responsive to changes in circulating glucose levels. Its unusual kinetic properties are intrinsically linked to the enzyme's conformational dynamics.

View Article and Find Full Text PDF

The transition period is a crucial stage in the reproductive cycle for dams and is linked closely with postpartum recovery, reproduction performance, and health. The confronting problem in the yak industry is that transition yaks under a conventional grazing feeding regime endure nutritional deficiency since this period is in late winter and early spring of the Qinghai-Tibet Plateau with the lack of grass on natural pasture. Therefore, this study aimed to investigate the effects of perinatal nutritional supplementation and early weaning on serum biochemistry, reproductive performance, and metabolomics in transition yaks.

View Article and Find Full Text PDF

The predictive value of combined insulin resistance and β-cell secretion in Yemeni school-aged children for type 2 diabetes mellitus.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sanaa, Republic of Yemen.

The present study aimed to determine the predictive power of the diabetic markers and metabolic syndrome factors in School-aged children for developing Type 2 DM. In this cross-sectional study, 1288 students aged 12-13 were recruited from public schools in the capital city of Sana'a. Anthropometric measurements and blood pressure were recorded and body mass index (BMI) was calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!