Ribosome Profiling of Vaccinia Virus-Infected Cells.

Methods Mol Biol

Division of Biology, Kansas State University, Manhattan, KS, USA.

Published: March 2020

Ribosome profiling is a method that determines genome-wide mRNA translation through measuring ribosome-protected mRNA fragments by deep sequencing. This method can be used to quantify gene expression at the translational level and precisely pinpoint ribosome loading onto mRNA with codon-level resolution. Genome-wide regulation of mRNA translation can also be determined if RNA-Sequencing (RNA-Seq) is carried out in parallel. Here, we describe a protocol for simultaneously performing ribosome profiling and RNA-Seq in cells infected with vaccinia virus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9593-6_11DOI Listing

Publication Analysis

Top Keywords

ribosome profiling
12
mrna translation
8
ribosome
4
profiling vaccinia
4
vaccinia virus-infected
4
virus-infected cells
4
cells ribosome
4
profiling method
4
method determines
4
determines genome-wide
4

Similar Publications

Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.

View Article and Find Full Text PDF

Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present a genome-wide translation map of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA fragments.

View Article and Find Full Text PDF

Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein.

View Article and Find Full Text PDF

Intestinal stem cells (ISCs) face the challenge of integrating metabolic demands with unique regenerative functions. Studies have shown an intricate interplay between metabolism and stem cell capacity; however, it is still not understood how this process is regulated. Combining ribosome profiling and CRISPR screening in intestinal organoids, we identify the nascent polypeptide-associated complex (NAC) as a key mediator of this process.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!