A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrated prediction model of recurrence in endometrial endometrioid cancers. | LitMetric

AI Article Synopsis

  • Endometrial cancer cases and deaths are increasing in the US, and understanding disease recurrence is crucial for improving patient outcomes and treatment decisions after surgery.* -
  • Researchers developed an integrated prediction model that combines clinical, pathological, and molecular data to effectively identify patients at risk for cancer recurrence.* -
  • Their model demonstrated high accuracy in predicting recurrence, with a scoring system that provides reliable risk assessments, while also enhancing the understanding of the molecular factors involved in recurrence.*

Article Abstract

Endometrial cancer incidence and mortality are rising in the US. Disease recurrence has been shown to have a significant impact on mortality. However, to date, there are no accurate and validated prediction models that would discriminate which individual patients are likely to recur. Reliably predicting recurrence would be of benefit for treatment decisions following surgery. We present an integrated model constructed with comprehensive clinical, pathological and molecular features designed to discriminate risk of recurrence for patients with endometrioid endometrial adenocarcinoma. A cohort of endometrioid endometrial cancer patients treated at our institution was assembled. Clinical characteristics were extracted from patient charts. Primary tumors from these patients were obtained and total tissue RNA extracted for RNA sequencing. A prediction model was designed containing both clinical characteristics and molecular profiling of the tumors. The same analysis was carried out with data derived from The Cancer Genome Atlas for replication and external validation. Prediction models derived from our institutional data predicted recurrence with high accuracy as evidenced by areas under the curve approaching 1. Similar trends were observed in the analysis of TCGA data. Further, a scoring system for risk of recurrence was devised that showed specificities as high as 81% and negative predictive value as high as 90%. Lastly, we identify specific molecular characteristics of patient tumors that may contribute to the process of disease recurrence. By constructing a comprehensive model, we are able to reliably predict recurrence in endometrioid endometrial cancer. We devised a clinically useful scoring system and thresholds to discriminate risk of recurrence. Finally, the data presented here open a window to understanding the mechanisms of recurrence in endometrial cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559142PMC
http://dx.doi.org/10.2147/CMAR.S202628DOI Listing

Publication Analysis

Top Keywords

endometrial cancer
16
risk recurrence
12
endometrioid endometrial
12
recurrence
10
prediction model
8
recurrence endometrial
8
disease recurrence
8
prediction models
8
discriminate risk
8
clinical characteristics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: