A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. | LitMetric

Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures.

Sci Rep

Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara, Brunei Darussalam.

Published: June 2019

Low power consumption, fast response and quick recovery times are important parameters for gas sensors performance. Herein, we report the experimental and theoretical studies of ZnO and Cr doped ZnO nanostructures used in low temperature (50 °C) sensors for the detection of CO. The synthesized films were characterized by XRD, UV-Vis, FE-SEM and EDX. The XRD patterns for the ZnO and 0.5 wt% Cr/ZnO films confirm the formation of a single-phase hexagonal wurtzite structure. The reduction of the ZnO optical band gap from 3.12 eV to 2.80 eV upon 0.5 wt% Cr doping is well correlated with the simulation data. The FE-SEM images of the films show spherical morphology with the estimated particle sizes of about ~40 nm and ~ 25 nm were recorded for the ZnO and 0.5 wt% Cr/ZnO films, respectively. Enhanced gas sensing performance is achieved with Cr doping and the sensitivity of ZnO increases from 9.65% to 65.45%, and simultaneously decreasing the response and recovery times from 334.5 s to 172.3 s and from 219 s to 37.2 s, respectively. These improvements in gas sensing performance are due to the reduction in particle size and optical band gap, and an increase in specific surface area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592902PMC
http://dx.doi.org/10.1038/s41598-019-45313-wDOI Listing

Publication Analysis

Top Keywords

zno nanostructures
8
nanostructures low
8
recovery times
8
zno 05 wt%
8
05 wt% cr/zno
8
cr/zno films
8
optical band
8
band gap
8
gas sensing
8
sensing performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!