AI Article Synopsis

  • Birds are capable of phenotypic flexibility throughout the year, adjusting their metabolism and muscle characteristics to meet seasonal ecological challenges.
  • The study looked at gray catbirds at different times of the year, revealing that their metabolic rates and flight muscle changes are most pronounced during migration periods, demonstrating that physical adaptations occur in response to varying energetic demands.
  • During tropical wintering, the birds prioritize fat storage over utilization, indicated by specific gene regulation changes, while certain transcription factors are upregulated in preparation for migration, highlighting their role in supporting long-distance travel.

Article Abstract

Phenotypic flexibility across the annual cycle allows birds to adjust to fluctuating ecological demands. Varying energetic demands associated with time of year have been demonstrated to drive metabolic and muscle plasticity in birds, but it remains unclear what molecular mechanisms control this flexibility. We sampled gray catbirds at five stages across their annual cycle: tropical overwintering (January), northward spring (late) migration (early May), breeding (mid June), the fall pre-migratory period (early August) and southward fall (early) migration (end September). Across the catbird's annual cycle, cold-induced metabolic rate () was highest during migration and lowest during tropical wintering. Flight muscles exhibited significant hypertrophy and/or hyperplasia during fall migratory periods compared with breeding and the fall pre-migratory period. Changes in heart mass were driven by the tropical wintering stage, when heart mass was lowest. Mitochondrial content of the heart and pectoralis remained constant across the annual cycle as quantified by aerobic enzyme activities (CS, CCO), as did lipid catabolic capacity (HOAD). In the pectoralis, transcription factors PPARα, PPARδ and ERRβ, coactivators PGC-1α and β, and genes encoding proteins associated with fat uptake (FABPpm, Plin3) were unexpectedly upregulated in the tropical wintering stage, whereas those involved in fatty acid oxidation (ATGL, LPL, MCAD) were downregulated, suggesting a preference for fat storage over utilization. Transcription factors and coactivators were synchronously upregulated during pre-migration and fall migration periods in the pectoralis but not the heart, suggesting that these pathways are important in preparation for and during early migration to initiate changes to phenotypes that facilitate long-distance migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681010PMC
http://dx.doi.org/10.1242/jeb.198028DOI Listing

Publication Analysis

Top Keywords

annual cycle
20
tropical wintering
12
catbird's annual
8
fall migration
8
fall pre-migratory
8
pre-migratory period
8
early migration
8
heart mass
8
wintering stage
8
transcription factors
8

Similar Publications

Müller glia in short- term dark adaptation of the Austrolebias charrua retina: cell proliferation and cytoarchitecture.

Exp Cell Res

December 2024

Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:

Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out.

View Article and Find Full Text PDF

Coarse roots represent a globally important belowground carbon pool, but the factors controlling coarse root decomposition rates remain poorly understood relative to other plant biomass components. We compiled the most comprehensive dataset of coarse root decomposition data including 148 observations from 60 woody species, and linked coarse root decomposition rates to plant traits, phylogeny and climate to address questions of the dominant controls on coarse root decomposition. We found that decomposition rates increased with mean annual temperature, root nitrogen and phosphorus concentrations.

View Article and Find Full Text PDF

[Transition of Food Consumption Patterns and Carbon Footprint of Urban and Rural Residents in China].

Huan Jing Ke Xue

January 2025

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.

The food system is an important source of greenhouse gas emissions, and the carbon footprint analysis of food consumption under the dual carbon background is of great significance for the sustainable development of the food system. To reveal the differences in food consumption patterns and carbon footprints between urban and rural residents in China, the life cycle carbon emission coefficient method was used to measure the direct carbon emissions of food consumption by urban and rural residents in China from 2000 to 2021. From the perspective of carbon footprint composition, the following main conclusions were drawn: ① The structure of food consumption among residents in China shifted from predominantly plant-based to a balanced consumption of both plant- and animal-based foods, reducing the disparity in various food consumption quantities between urban and rural residents.

View Article and Find Full Text PDF

The species-area relationship (SAR) is one of the oldest in ecology, linking the increase in species richness in sampling area. Later, new parameters were incorporated into its equation, such as taxon-specific responses, habitats use by species and species adapted to human-modified habitats, originating the Countryside SAR, a version intended to integrate the life cycle assessment (LCA) methodology, which is still inefficiencies when used to evaluate food production systems. Therefore, we present the first attempt to incorporate into Countryside SAR the minimum land demand parameter for food production, the food environmental footprint - EFP, and improve the use of the method within the agricultural sciences scope.

View Article and Find Full Text PDF

Vertical and horizontal variabilities of ammonia in an agricultural area of Southeast China.

J Environ Manage

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.

Ammonia (NH) plays a crucial role in the global nitrogen cycle, the increased NH emissions from agricultural activities impacting air, soil, water quality, and human health. Accurately estimating both the vertical and horizontal transport distances of NH are important for effective pollution control. Therefore, we used a helium-filled balloon mounted sampler to analyze the vertical profiles of NH emissions and their seasonal variations in an agricultural area of southeast China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!