Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Diabetes leads to progressive complications such as diabetic retinopathy, which is the leading cause of blindness within the working-age population worldwide. Interleukin (IL)-17A is a cytokine that promotes and progresses diabetes. The objective of this study was to determine the role of IL-17A in retinal capillary degeneration, and to identify the mechanism that induces retinal endothelial cell death. These are clinically meaningful abnormalities that characterize early-stage non-proliferative diabetic retinopathy.
Methods: Retinal capillary degeneration was examined in vivo using the streptozotocin (STZ) diabetes murine model. Diabetic-hyperglycemia was sustained for an 8-month period in wild type (C57BL/6) and IL-17A mice to elucidate the role of IL-17A in retinal capillary degeneration. Further, ex vivo studies were performed in retinal endothelial cells to identify the IL-17A-dependent mechanism that induces cell death.
Results: It was determined that diabetes-induced retinal capillary degeneration was significantly lower in IL-17A mice. Further, retinal endothelial cell death occurred through an IL-17A/IL-17R ➔ Act1/FADD signaling cascade, which caused caspase-mediated apoptosis.
Conclusion: These are the first findings that establish a pathologic role for IL-17A in retinal capillary degeneration. Further, a novel IL-17A-dependent apoptotic mechanism was discovered, which identifies potential therapeutic targets for the early onset of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690768 | PMC |
http://dx.doi.org/10.1016/j.jdiacomp.2019.05.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!