Background: We aimed to evaluate whether serum activin-A levels are elevated and have any value in predicting severity and prognosis in acute respiratory distress syndrome (ARDS).
Methods: Retrospective cohort study was performed with patients who were admitted to MICU with diagnosis of ARDS and have serum samples stored within 48 h of Intensive care unit (ICU) admission between March 2013 and December 2016 at a single tertiary referral hospital. Serum activin-A levels were measured with ELISA kit, and were compared with those of normal healthy control and non-ARDS sepsis patients.
Results: Total 97 ARDS patients were included for the study. Levels of Activin-A were elevated in ARDS patients compared to those of healthy controls (Log-transformed activin-A levels 2.89 ± 0.36 vs. 2.34 ± 0.11, p < 0.001, absolute activin-A levels 1525.6 ± 1060.98 vs. 225.9 ± 30.1, p = 0.016) and non-ARDS sepsis patients (Log-transformed activin-A levels 2.89 ± 0.36 vs. 2.73 ± 0.34, p = 0.002, Absolute activin-A levels 1525.6 ± 1060.98 vs. 754.8 ± 123.5 pg/mL, p = 0.036). When excluding five outliers with extremely high activin-A levels, activin-A showed statistically significant correlation with in-hospital mortalities (In-hospital survivors 676.2 ± 407 vs. non-survivors 897.9 ± 561.9 pg/mL, p = 0.047). In predicting in-hospital mortality, serum activin-A concentrations showed superior area under curve compared to that of Acute physiologic and chronic health evaluation II scores (0.653; 95% CI [0541, 0.765] vs. 0.591, 95% CI [0.471, 0.710]). With cut-off level of 708 pg/mL, those with high serum activin-A levels had more than twofold increased risk of in-hospital mortalities. However, those relations were missing when outliers were in.
Conclusions: Serum activin-A levels in ARDS patients are elevated. However, its levels are weakly associated with ARDS outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593589 | PMC |
http://dx.doi.org/10.1186/s12890-019-0879-6 | DOI Listing |
Cancer Med
January 2025
Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
Background: Activin A, a noteworthy member of the TGF-β superfamily. Activin A can regulate the biological functions of various immune cells, such as macrophages, neutrophils, NK cells, etc. The purpose of this study is to investigate the regulatory effect and related mechanisms of activin A on CD8 T cells.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey.
Objectives: Activin-A belongs to the transforming growth factor-beta superfamily and is a multifunctional cytokine that plays a role in inflammation, immune response, tissue repair and regeneration. Proinflammatory cytokine interleukin-1beta (IL-1β) can increase Activin-A expression in various cell types. This study aims to evaluate gingival crevicular fluid (GCF) and salivary Activin-A and IL-β levels in stage III periodontitis.
View Article and Find Full Text PDFTheriogenology
February 2025
Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China. Electronic address:
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF).
View Article and Find Full Text PDFAm J Cardiovasc Drugs
October 2024
Department of Pharmacy Practice, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, 3200 S University Dr, Fort Lauderdale, FL, 33328, USA.
This report illustrates the Food and Drug Administration (FDA) approval of first-in-its-class activin A receptor IIA inhibitor, sotatercept (Winrevair™), for the treatment of pulmonary arterial hypertension (PAH). Sotatercept is used to increase exercise capacity, improve WHO functional class, and decrease the risk of clinical worsening events in adults with PAH. One phase 2 trial, one phase 3 trial, and an ongoing open-label extension study is described in detail within the current text.
View Article and Find Full Text PDFCommun Biol
October 2024
Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!