Neutrophil myeloperoxidase (MPO) plays an important role in protecting the body against infections. MPO products - hypohalous acids and phenoxyl radicals - are strong oxidants that can damage not only foreign intruders but also host tissues, including blood plasma proteins. Here, we compared the MPO-induced oxidation of two plasma proteins with antioxidant properties - human serum albumin (HSA) and ceruloplasmin (CP). Incubation of both proteins with hypochlorite (NaOCl) or catalytically active MPO (MPO + H2O2), which synthesizes hypochlorous acid (HOCl) in the presence of chloride ions, resulted in the quenching of protein tryptophan fluorescence. Oxidation-induced changes in the structures of HSA and CP were different. HSA efficiently neutralized MPO-generated oxidants without protein aggregation, while CP oxidation resulted in the formation of large aggregates stabilized by strong covalent bonds between the aromatic amino acid residues. Tyrosine is present in the plasma as free amino acid and also as a component of the polypeptide chains of the proteins. The number of tyrosine residues in a protein does not determine its propensity for aggregate formation. In the case of CP, protein aggregation was primarily due to the high content of tryptophan residues in its polypeptide chain. MPO-dependent oxidation of free tyrosine results in the formation of tyrosyl radicals, that do not oxidize aromatic amino acid residues in proteins because of the high rate of recombination with dityrosine formation. At the same time, free tyrosine can influence MPO-induced protein oxidation due to its ability to modulate HOCl synthesis in the MPO active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0006297919060087 | DOI Listing |
J Chem Inf Model
January 2025
School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China.
Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
This study aimed to investigate the effects of heat-killed N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of , and .
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, UK.
Collagen is the most ubiquitous protein in the animal kingdom and one of the most abundant proteins on Earth. Despite having a relatively repetitive amino acid sequence motif that enables its triple helical structure, in type 1 collagen, that dominates skin and bone, there is enough variation for its increasing use for the biomolecular species identification of animal tissues processed or degraded beyond the amenability of DNA-based analyses. In recent years, this has been most commonly achieved through the technique of collagen peptide mass fingerprinting (PMF) known as ZooMS (Zooarchaeology by Mass Spectrometry), applied to the analysis of tens of thousands of samples across over one hundred studies in the past decade alone.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Background And Aims: Steatotic liver disease (SLD) is the most common chronic liver disease strongly associated with metabolic dysfunction, but its pathogenesis remains incompletely understood. Exploring plasma circulating metabolites may help in elucidating underlying mechanisms and identifying new biomarkers for SLD.
Methods: We examined cross-sectionally the association between plasma metabolites and SLD as well as liver enzymes using data from 4 population-based cohort studies (Rotterdam study, Avon Longitudinal Study of Parents and Children, The Insulin Resistance Atherosclerosis Family Study, and Study of Latinos).
Background: Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients.
Methods: Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, = 40; LBP, = 40) and Healthy Controls (HC, = 31).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!