Biochemistry (Mosc)
Institute of Carcinogenesis, Blokhin National Medical Research Centre of Oncology, Public Health Ministry of Russian Federation, Moscow, 115478, Russia.
Published: June 2019
Actin plays an important role in cellular adhesion, muscle and non-muscle contractility, migration, polarization, mitosis, and meiosis. Investigation of specific mechanisms underlying these processes is essential not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlate with severe pathologies. In this review we summarize the isoform-specific functions of actin associated with adhesion structures, motility and division of normal and tumor cells; alterations of the expression and structural organization of actin isoforms in normal and tumor cells. Selective regulation of cytoplasmic β- or γ-actin expression determines functional diversity between isoforms: β-actin plays the predominant role in contraction and intercellular adhesion, and γ-actin is responsible for the cellular plasticity and motility. Similar data were obtained in different epithelial and mesenchymal neoplastic cell cultures, as well as in immunomorphological comparison of normal human tissues with tumor analogues. Reorganization of the actin cytoskeleton and cell-cell contacts is essential for proliferation control and acquisition of invasiveness in epithelial tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0006297919060014 | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
Various N-terminal tags have often been used to identify the functions and localization of Rab small GTPases, but their impact on Rab proteins themselves has been poorly investigated. Here, we used a knockout (KO)-rescue approach to systematically evaluate the effect of N-terminal tagging of two Rabs, Rab10 and Rab27A, on Rab10-KO HeLa cells and Rab27A-deficient melanocytes (melan-ash cells), respectively. The results showed that all of the N-terminal-tagged Rab27A proteins mediated actin-based melanosome transport in the melan-ash cells, but none of the N-terminal-tagged Rab10 proteins fully rescued the defect in tubular endosome formation in the Rab10-KO cells.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Physiology, University of Kentucky, Lexington, KY, United States.
Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.