The Anthropocene will be characterized by increased environmental disturbances, leading to the survival of stress-tolerant organisms, particularly in the oceans, where novel marine diseases and elevated temperatures are re-shaping ecosystems. These environmental changes underscore the importance of identifying mechanisms which promote stress tolerance in ecologically important non-model species such as reef-building corals. Mitochondria are central regulators of cellular stress and have dedicated recovery pathways including the mitochondrial unfolded protein response, which increases the transcription of protective genes promoting protein homeostasis, free radical detoxification and innate immunity. In this investigation, we identify a mitochondrial unfolded protein response in the endangered Caribbean coral Orbicella faveolata, by performing in vivo functional replacement using a transcription factor (Of-ATF5) originating from a coral in the model organism Caenorhabditis elegans. In addition, we use RNA-seq network analysis and transcription factor-binding predictions to identify a transcriptional network of genes likely to be regulated by Of-ATF5 which is induced during the immune challenge and temperature stress. Overall, our findings uncover a conserved cellular pathway which may promote the ability of reef-building corals to survive increasing levels of environmental stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599992PMC
http://dx.doi.org/10.1098/rspb.2019.0470DOI Listing

Publication Analysis

Top Keywords

mitochondrial unfolded
12
unfolded protein
12
protein response
12
reef-building corals
8
uncovering mitochondrial
4
protein
4
response corals
4
corals role
4
role adapting
4
adapting changing
4

Similar Publications

Trimethylamine-N-oxide accelerates osteoporosis by PERK activation of ATF5 unfolding.

Cell Mol Life Sci

December 2024

Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.

Imbalances in gut microbiota and their metabolites have been implicated in osteoporotic disorders. Trimethylamine-n-oxide (TMAO), a metabolite of L-carnitine produced by gut microorganisms and flavin-containing monooxygenase-3, is known to accelerate tissue metabolism and remodeling; however, its role in bone loss remained unexplored. This study investigates the relationship between gut microbiota dysbiosis, TMAO production, and osteoporosis development.

View Article and Find Full Text PDF

A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins.

Nucleic Acids Res

December 2024

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.

G-quadruplexes (G4s), as an important type of non-canonical nucleic acid structure, have received much attention because of their regulations of various biological processes in cells. Identifying G4s-protein interactions is essential for understanding G4s-related biology. However, current strategies for exploring G4 binding proteins (G4BPs) include pull-down assays in cell lysates or photoaffinity labeling, which are lack of sufficient spatial specificity at the subcellular level.

View Article and Find Full Text PDF

Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney.

iScience

December 2024

Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS.

View Article and Find Full Text PDF

ADNP is essential for sex-dependent hippocampal neurogenesis, through male unfolded protein response and female mitochondrial gene regulation.

Mol Psychiatry

December 2024

Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.

Essential for brain formation and protective against tauopathy, activity-dependent neuroprotective protein (ADNP) is critical for neurogenesis and cognitive functions, while regulating steroid hormone biogenesis. As such, de novo mutations in ADNP lead to syndromic autism and somatic ADNP mutations parallel Alzheimer's disease progression. Furthermore, clinical trials with the ADNP fragment NAP (the investigational drug davunetide) showed efficacy in women suffering from the tauopathy progressive supranuclear palsy and differentially boosted memory in men (spatial) and women (verbal), exhibiting prodromal Alzheimer's disease.

View Article and Find Full Text PDF

Taurine mechanism in preventing retinal cell damage from acute ocular hypertension through GTPBP3 regulation.

Exp Eye Res

December 2024

Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China. Electronic address:

We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (HO)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!