Conservative sensor error modeling is of great significance in the field of safety-of-life. At present, the overbound method has been widely used in areas such as satellite-based augmentation systems (SBASs) and ground-based augmentation systems (GBASs) that provide integrity service. It can effectively solve the difficulties of non-Gaussian and non-zero mean error modeling and confidence interval estimation of user position error. However, there is still a problem in that the model is too conservative and leads to the lack of availability. In order to further improve the availability of SBASs, an improved paired overbound method is proposed in this paper. Compared with the traditional method, the improved algorithm no longer requires the overbound function to conform to the characteristics of the probability distribution function, so that under the premise of ensuring the integrity of the system, the real error characteristics can be more accurately modeled and measured. The experimental results show that the modified paired overbound method can improve the availability of the system with a probability of about 99%. In view of the fact that conservative error modeling is more sensitive to large deviations, this paper analyzes the robustness of the improved algorithm in the case of abnormal data loss. The maximum deviation under a certain integrity risk is used to illustrate the effectiveness of the improved paired overbound method compared with the original method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631503PMC
http://dx.doi.org/10.3390/s19122826DOI Listing

Publication Analysis

Top Keywords

overbound method
20
error modeling
16
paired overbound
16
augmentation systems
12
conservative sensor
8
sensor error
8
modified paired
8
satellite-based augmentation
8
improve availability
8
improved paired
8

Similar Publications

The anisotropic and isotropic R dispersion contributions (disp8) are derived and implemented within the framework of the effective fragment potential (EFP) method formulated with imaginary frequency-dependent Cartesian polarizability tensors distributed at the centroids of the localized molecular orbitals (LMOs). Two forms of damping functions, intermolecular overlap-based and Tang-Toennies, are extended for disp8. To obtain LMO polarizability tensors centered at LMO centroids, an origin-shifting transformation is derived and implemented for the dipole-octopole polarizability tensor and the quadrupole-quadrupole polarizability tensor.

View Article and Find Full Text PDF

Conservative sensor error modeling is of great significance in the field of safety-of-life. At present, the overbound method has been widely used in areas such as satellite-based augmentation systems (SBASs) and ground-based augmentation systems (GBASs) that provide integrity service. It can effectively solve the difficulties of non-Gaussian and non-zero mean error modeling and confidence interval estimation of user position error.

View Article and Find Full Text PDF

We present an extension to the recent 3OB parametrization of the Density Functional Tight Binding Model DFTB31,2 for biological and organic systems. Parameters for the halogens F, Cl, Br, and I have been developed for use in covalently bound systems and benchmarked on a test set of 106 molecules (the ‘OrgX’ set), using bonding distances, bonding angles, atomization energies, and vibrational frequencies to assess the performance of the parameters. Additional testing has been done with the X40 set of 40 supramolecular systems containing halogens,3 adding a simple correction for the halogen bonds that are strongly overbound in DFTB3.

View Article and Find Full Text PDF

Method of increments for the halogen molecular crystals: Cl, Br, and I.

J Chem Phys

September 2014

Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.

Method of increments (MI) calculations reveal the n-body correlation contributions to binding in solid chlorine, bromine, and iodine. Secondary binding contributions as well as d-correlation energies are estimated and compared between each solid halogen. We illustrate that binding is entirely determined by two-body correlation effects, which account for >80% of the total correlation energy.

View Article and Find Full Text PDF

Binding in Radical-Solvent Binary Complexes: Benchmark Energies and Performance of Approximate Methods.

J Chem Theory Comput

March 2013

Environmental Chemistry Modeling Laboratory, EPFL, Lausanne, Switzerland.

In many situations, weak interactions between radicals and their environment potentially influence their properties and reactivity. We computed benchmark binding energies of 12 binary complexes involving radicals, using basis set extrapolated coupled cluster theory with up to CCSDT(Q) excitations plus corrections for core correlation and relativistic effects. The set was comprised of both electron-rich and electron-poor small radicals which were either neutral or positively charged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!