To observe feasibility of membrane distillation (MD) as post-treatment for anaerobic fluidized bed membrane bioreactor (AFMBR), removals of organic and total nitrogen were investigated by using the commercial polyvinylidene difluoride (PVDF) membrane for direct contact membrane distillation (DCMD) at various operational conditions. Test solutions for MD experiments were permeate produced by staged AFMBR (SAF-MBR), permeate from single AFMBR and synthetic wastewater fed to both reactors. Increasing in feed temperature improved permeate flux through PVDF membrane, but it decreased total nitrogen (TN) removal efficiency. Effect of chemical oxygen demand (COD) concentrations in feed solutions for DCMD on TN removal efficiency was almost negligible. However, the COD removal efficiency was lower at lower feed concentration in DCMD operation. At constant feed temperature, TN removal efficiency was improved by increasing a recirculation flow rate on PVDF membrane across DCMD system. Both organic and inorganic fouling were observed on PVDF membrane surface and pore matrix after conducting DCMD operation. The organic fouling on PVDF membrane consisted mainly of protein and fatty acids, supporting that the permeate produced by AFMBR should have potentials to foul the membrane applied in DCMD system as post-treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.06.043 | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.
Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd., University II DC, Cachoeira do Sul 96503-205, RS, Brazil.
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!