A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. | LitMetric

The raw fresh leachate from municipal solid waste (MSW) incineration plants contains high concentrations of volatile fatty acids (VFAs), ammonia and metals, all compounds that severely limit anaerobic digestion treatment efficiencies. These inhibitory compounds make reactor systems unstable, causing reactor start-up periods to take more than 100 days, even when the leachate is diluted significantly. In this study, granular activated carbon (GAC) was incorporated into a bioreactor fed with raw incineration leachate. Addition of GAC allowed direct treatment of raw incineration leachate without any start-up acclimation period, while the non-amended control reactor soured immediately and collapsed within 17 days. When hydraulic retention time (HRT) of the GAC-amended reactor was stepwise decreased to increase organic loading rates (OLR) to 25.0 kgCOD/(m·d), COD removal efficiencies remained stable at >90%. Metagenomic analysis of the GAC-amended reactor revealed that Geobacter and Methanosarcina, species known to participate in direct interspecies electron transfer (DIET), were more abundant in the GAC-amended reactor than the seed sludge. In addition, the abundance of genes coding for proteins thought to be involved in DIET such as electrically conductive pili and the outer membrane c-type cytochrome, OmcS, increased significantly, while genes involved in fermentation, and nitrate (narG) and sulfate (dsrA) reduction dropped significantly as the experiment progressed. These results are significant because this is the first detailed investigation into the metabolic capabilities of microbial communities involved in efficient treatment of raw incineration leachate within biomethanogenic reactors that did not require a long start-up period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.06.038DOI Listing

Publication Analysis

Top Keywords

raw incineration
16
incineration leachate
16
gac-amended reactor
12
metagenomic analysis
8
activated carbon
8
anaerobic digestion
8
direct interspecies
8
interspecies electron
8
electron transfer
8
treatment raw
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!