A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model. | LitMetric

Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model.

FASEB J

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.

Published: September 2019

Exposure to space environment induces alterations in glucose and lipid metabolism that contribute to muscular atrophy, bone loss, and cardiovascular disorders. Intestinal microbiota is also changed, but its impact on spaceflight-related metabolic disorder is not clear. We investigated the relationship between glucose metabolic changes and gut dysbiosis in a hind limb-unloading (HU) mouse model, a well-accepted ground-based spaceflight analog. Impaired body weight gain, glucose intolerance, and peripheral insulin resistance were found in 2-4-wk HU mice. Reduced abundance of gut spp. and was observed within 3 d of HU. The ground-based control (Ctrl) mice that were cohoused with HU mice showed similar patterns of dysbiosis and metabolic changes. Compared with the Ctrls, higher levels of plasma LPS-binding protein and altered transcription of and glucose metabolism-related genes in the liver were observed in HU mice. The supplementation of spp. suppressed endotoxemia and liver inflammation and improved glucose tolerance in HU mice. The results indicate a close relationship between dysbiosis and altered glucose metabolism in the HU model and also emphasize the importance of evaluating intestinal microbiota in astronauts and its effect on glucose metabolism.-Wang, Y., Zhao, W., Shi, J., Wang, J., Hao, J., Pang, X., Huang, X., Chen, X., Li, Y., Jin, R., Ge, Q. Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201900238RRDOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
16
altered glucose
12
glucose metabolism
12
mouse model
12
glucose
9
microbiota contributes
8
contributes altered
8
metabolism simulated
8
simulated microgravity
8
microgravity mouse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!