Purpose: To evaluate optical coherence tomography angiography (OCTA) characteristics of choroidal neovascularization (CNV) in eyes requiring different treatment frequency of anti-vascular endothelial growth factor (VEGF) therapy for neovascular age-related macular degeneration (NVAMD).
Design: Prospective observational case series.
Methods: Subjects who had undergone anti-VEGF treatment for NVAMD in the AVATAR study were subdivided into 3 groups depending on required anti-VEGF dosing: (i) treat-and-extend requiring every 4-6 weeks dosing (TEq4-6w), (ii) treat-and-extend requiring every 7-12 weeks dosing (TEq7-12w), (iii) eyes not requiring injection within last 12 months (PRN >12mo). OCTA images were evaluated for the morphological characteristics of CNV and the choriocapillaris flow void.
Results: Study consisted 40 eyes of 31 patients with a mean age of 79.9 ± 6.2 years. CNV morphology analysis on OCTA was feasible in 29 (73%) eyes. Ninety percent of CNVs in TEq7-12w group were irregular in shape involving foveal center, while 67% of CNVs in PRN>12mo group were circular in shape sparing foveal center. Among three groups, statistical difference was found in CNV shape (P = .012) and CNV location (P = .003), while no statistical difference was found in the CNV area (P = .14), vessel density (P = .19), presence of core vessels (P = .23), the presence of small margin loops (P = .20), large margin loops (P = .14), CNV maturity (P = .40), or the mean percentage of choriocapillaris area with flow void (P = .66).
Conclusion: The combination of CNV sparing the foveal center with higher circularity may suggest a clinically inactive CNV following initial anti-VEGF therapy. We found minimal distinguishing OCTA characteristics between those eyes that required ongoing therapy with the treat-and-extend regimen. More research is needed to identify specific CNV characteristics on OCTA that may become a useful tool for the management of NVAMD and timing of treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592566 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218889 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!