Deep learning approach to peripheral leukocyte recognition.

PLoS One

Department of Technology Research, Beijing iCELL Medical Co. Ltd., Beijing, China.

Published: February 2020

Microscopic examination of peripheral blood plays an important role in the field of diagnosis and control of major diseases. Peripheral leukocyte recognition by manual requires medical technicians to observe blood smears through light microscopy, using their experience and expertise to discriminate and analyze different cells, which is time-consuming, labor-intensive and subjective. The traditional systems based on feature engineering often need to ensure successful segmentation and then manually extract certain quantitative and qualitative features for recognition but still remaining a limitation of poor robustness. The classification pipeline based on convolutional neural network is of automatic feature extraction and free of segmentation but hard to deal with multiple object recognition. In this paper, we take leukocyte recognition as object detection task and apply two remarkable object detection approaches, Single Shot Multibox Detector and An Incremental Improvement Version of You Only Look Once. To improve recognition performance, some key factors involving these object detection approaches are explored and the detection models are generated using the train set of 14,700 annotated images. Finally, we evaluate these detection models on test sets consisting of 1,120 annotated images and 7,868 labeled single object images corresponding to 11 categories of peripheral leukocytes, respectively. A best mean average precision of 93.10% and mean accuracy of 90.09% are achieved while the inference time is 53 ms per image on a NVIDIA GTX1080Ti GPU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592546PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218808PLOS

Publication Analysis

Top Keywords

leukocyte recognition
12
object detection
12
peripheral leukocyte
8
detection approaches
8
detection models
8
annotated images
8
recognition
6
object
5
detection
5
deep learning
4

Similar Publications

Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches.

View Article and Find Full Text PDF

LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells.

J Exp Clin Cancer Res

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.

Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.

View Article and Find Full Text PDF

The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.

View Article and Find Full Text PDF

T cells targeting a KRAS mutation can induce durable tumor regression in some patients with metastatic epithelial cancer. It is unknown whether T cells targeting mutant KRAS that are capable of killing tumor cells can be identified from peripheral blood of patients with pancreatic cancer. We developed an in vitro stimulation approach and identified HLA-A*11:01-restricted KRAS G12V-reactive CD8+ T cells and HLA-DRB1*15:01-restricted KRAS G12V-reactive CD4+ T cells from peripheral blood of 2 out of 6 HLA-A*11:01-positive patients with pancreatic cancer whose tumors expressed KRAS G12V.

View Article and Find Full Text PDF

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!