Mass balance study of brominated flame retardants in female captive peregrine falcons.

Environ Sci Process Impacts

Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Göteborg, Sweden.

Published: July 2019

Little is known about brominated flame retardant (BFR) dynamics in birds, especially large molecules such as decabromodiphenyl ether (BDE-209). In particular, bioaccumulation from food and transfer dynamics to eggs are poorly understood. Therefore, an input-output mass balance study of tri-decaBDEs, DBDPE and HBCDD was performed in three female peregrine falcons from a captive breeding program by analyzing their naturally contaminated food (quail, chicken (cockerels)), plasma, feces and eggs. Predominant BFRs in cockerels and quail were BDE-209 and DBDPE, as well as HBCDD in quail. The predominant BFRs found in falcon plasma were BDE-209, -153 and -183, in eggs, HBCDD, BDE-209 and -153 and in feces, BDE-209. Mean absorption efficiencies (AE) for the tetra-octabrominated BDEs ranged from 84-100% and 70% for HBCDD. The AEs for BDE-206, -207, -208 and -209 varied due to the large variability seen for feces fluxes. All egg/plasma ratios for BDEs were similar and greater than one (range 1.1-2.7), including for BDE-209, indicating efficient transfer from females to the eggs. Excretion via egg-laying was approximately 6.0-29% of the initial, pre-breeding body burden of individual penta-decaBDE congeners, (15-45% for BDE-206). HBCDD was not detected in plasma but was found in eggs, also indicating efficient transfer and excretion via eggs. Input fluxes from food exceeded the output fluxes (feces, eggs) indicating considerable metabolism for tetra-octaBDEs, possibly also for the nona-decaBDEs and HBCDD. Bioaccumulation factors calculated from lipid weight concentrations in plasma and food (BAFp) were highest for BDE-208 (31), -153 (23), -209 (19) and -207 (16) and from eggs and food (BAFe), were highest for HBCDD (140), BDE-153 (41), -208 (42), BDE-207 (24) and BDE-209 (21). BAFe and BAFp values were below 10 for BDE-47, -99 and -100. For one falcon, egg results were available from three different years and estimated half-lives were 65 d (BDE-99), 624 d (BDE-153), 31 d (BDE-154), 349 d (BDE-183), 77 d (BDE-196) and 89 d (BDE-197).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9em00177hDOI Listing

Publication Analysis

Top Keywords

mass balance
8
balance study
8
brominated flame
8
peregrine falcons
8
eggs
8
feces eggs
8
predominant bfrs
8
bde-209 -153
8
indicating efficient
8
efficient transfer
8

Similar Publications

Background: Frailty is a common geriatric syndrome worldwide, and its early identification and intervention have important clinical significance. Resistance training has been recommended as an efficient means to combat loss of muscle strength and mass; however, it is often not a prioritized option for older adults. Tai chi is a well-known traditional Chinese exercise that has a beneficial impact on physical performance, balance ability, metabolism, and immune function.

View Article and Find Full Text PDF

Evaluating multiannual sedimentary nutrient retention in agricultural two-stage channels.

Sci Rep

January 2025

Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.

View Article and Find Full Text PDF

Gryllus madagascarensis (Orthoptera: Gryllidae) is a cricket species that shows promise to mitigate food insecurity and malnutrition. But whether this species will accept low- to no-cost weeds and agro by-products as feed, and how these feeds affect its performance, remains unknown. This study assessed the acceptability of 66 weed species and agro by-products (derived from a single plant species) by adult G.

View Article and Find Full Text PDF

Self-Etching Pd-Pb Nanoparticles with Controllable Tensile Strain for C Alcohol Oxidation.

ACS Appl Mater Interfaces

December 2024

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.

Pd-based nanocatalysts hold significant promise for application in alkaline direct ethanol fuel cells (DEFCs). To address the challenges of low Pd atom utilization and poor reaction kinetics in conventional Pd-based catalysts, a self-etching strategy has been developed to synthesize PdPb nanoparticles (NPs) with tunable size and abundant tensile strain. The nanoparticles demonstrated a markedly enhanced electrocatalytic performance.

View Article and Find Full Text PDF

Purpose: Protein supplementation has been proposed as an effective dietary strategy for maintaining or increasing skeletal muscle mass and improving physical performance in middle-aged and older adults. Diabetes mellitus exacerbates muscle mass loss, leading to many older adults with type 2 diabetes mellitus (T2DM) experiencing sarcopenia, and vice versa. Our objective was to assess the impact of increased dietary protein intake on muscle mass, strength, physical performance, and the progression of T2DM in middle-aged and older adults diagnosed with this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!