A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Responding to Threats Both Foreign and Domestic: NOD-Like Receptors in Corals. | LitMetric

Historically mechanisms with which basal animals such as reef-building corals use to respond to changing and increasingly stressful environments have remained elusive. However, the increasing availability of genomic and transcriptomic data from these organisms has provided fundamental insights into the biology of these critically important ecosystem engineers. Notably, insights into cnidarians gained in the post-genomics age have revealed a surprisingly complex immune system which bears a surprising level of similarity with the vertebrate innate immune system. This system has been critically linked to how corals respond to the two most prominent threats on a global scale, emerging coral diseases and increasing water temperature, which are recognized cellularly as either foreign or domestic threats, respectively. These threats can arise from pathogenic microbes or internal cellular dysfunction, underscoring the need to further understand mechanisms corals use to sense and respond to threats to their cellular integrity. In this investigation and meta-analysis, we utilize resources only recently available in the post-genomic era to identify and characterize members of an underexplored class of molecules known as NOD-like receptors in the endangered Caribbean coral Orbicella faveolata. We then leverage these data to identify pathways possibly mediated by NLRs in both O. faveolata and the ecologically important branching coral Acropora digitifera. Overall, we find support that this class of proteins may provide a mechanistic link to how reef-building corals respond to threats both foreign and domestic.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icz111DOI Listing

Publication Analysis

Top Keywords

foreign domestic
12
corals respond
12
threats foreign
8
nod-like receptors
8
reef-building corals
8
immune system
8
respond threats
8
corals
5
threats
5
responding threats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!