Cell fate in eukaryotes is controlled by mitogen-activated protein kinases (MAPKs) that translate external cues into cellular responses. In plants, two MAPKs-MPK3 and MPK6-regulate diverse processes of development, environmental response and immunity. However, the mechanism that bridges these shared signalling components with a specific target remains unresolved. Focusing on the development of stomata-epidermal valves that are essential for gas exchange and transpiration-here, we report that the basic helix-loop-helix protein SCREAM functions as a scaffold that recruits MPK3/6 to downregulate SPEECHLESS, a transcription factor that initiates stomatal cell lineages. SCREAM directly binds to MPK3/6 through an evolutionarily conserved, yet unconventional, bipartite motif. Mutations in this motif abrogate association, phosphorylation and degradation of SCREAM, unmask hidden non-redundancies between MPK3 and MPK6, and result in uncontrolled stomatal differentiation. Structural analyses of MPK6 with a resolution of 2.75 Å showed bipartite binding of SCREAM to MPK6 that is distinct from an upstream MAPKK. Our findings elucidate, at the atomic resolution, the mechanism that directly links extrinsic signals to transcriptional reprogramming during the establishment of stomatal cell fate, and highlight a unique substrate-binding mode adopted by plant MAPKs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668613 | PMC |
http://dx.doi.org/10.1038/s41477-019-0440-x | DOI Listing |
Eur J Hum Genet
January 2025
Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.
View Article and Find Full Text PDFMol Cell
January 2025
Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA. Electronic address:
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres in aged human fibroblasts and tissues and in various cellular senescent models.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDFPlanta
January 2025
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!