Cancer progression depends on a tumor-supportive microenvironment. Myeloid-derived suppressor cells (MDSCs) represent key cellular components in tumor microenvironment and have been demonstrated to facilitate tumor progression by restricting host immune responses and by sustaining the malignancy of cancer cells. CUL4B, which assembles the CUL4B-RING E3 ligase complex (CRL4B), possesses a potent oncogenic property in cancer cells by epigenetically inactivating many tumor suppressors. However, CUL4B in hematopoietic cells exerts tumor-suppressive effect by restricting the accumulation and function of MDSCs. How CUL4B regulates the function of MDSCs is not fully characterized. In the present study, we demonstrate that the enhanced growth and metastasis of transplanted tumor cells in hematopoietic or myeloid cell-specific Cul4b knockout recipient mice is mediated by increased production of IL-6 in MDSCs. CUL4B complex epigenetically represses IL-6 transcription in myeloid cells. The IL-6 produced by MDSCs renders cancer cells stem cell-like properties by activating IL-6/STAT3 signaling. This crosstalk was effectively blocked either by blocking IL-6 in MDSCs or by inhibition of STAT3 activation in tumor cells. These findings provide a new mechanistic insight into the cancer-promoting property of MDSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-019-0847-x | DOI Listing |
J Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFClin Neuropharmacol
October 2024
Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China.
Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.
View Article and Find Full Text PDFAm J Dermatopathol
December 2024
Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.
Microtubule-stabilizing agents (enfortumab vedotin and brentuximab vedotin) and microtubule-disrupting agents (docetaxel and paclitaxel) are used as anticancer agents but can also induce drug eruptions. Recently, mitotic arrest figures have been reported in various non-neoplastic cells as the histopathologic side effect of these drug eruptions. Therefore, we performed a comparative analysis of drug eruptions associated with these microtubule-targeting agents.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFScience
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!