Discovery of potent necroptosis inhibitors targeting RIPK1 kinase activity for the treatment of inflammatory disorder and cancer metastasis.

Cell Death Dis

Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123, Suzhou, Jiangsu, China.

Published: June 2019

Necroptosis is a form of regulated necrosis controlled by receptor-interacting kinase 1 (RIPK1 or RIP1), RIPK3 (RIP3), and pseudokinase mixed lineage kinase domain-like protein (MLKL). Increasing evidence suggests that necroptosis is closely associated with pathologies including inflammatory diseases, neurodegenerative diseases, and cancer metastasis. Herein, we discovered the small-molecule PK6 and its derivatives as a novel class of necroptosis inhibitors that directly block the kinase activity of RIPK1. Optimization of PK6 led to PK68, which has improved efficacy for the inhibition of RIPK1-dependent necroptosis, with an EC of around 14-22 nM in human and mouse cells. PK68 efficiently blocks cellular activation of RIPK1, RIPK3, and MLKL upon necroptosis stimuli. PK68 displays reasonable selectivity for inhibition of RIPK1 kinase activity and favorable pharmacokinetic properties. Importantly, PK68 provides strong protection against TNF-α-induced systemic inflammatory response syndrome in vivo. Moreover, pre-treatment of PK68 significantly represses metastasis of both melanoma cells and lung carcinoma cells in mice. Together, our study demonstrates that PK68 is a potent and selective inhibitor of RIPK1 and also highlights its great potential for use in the treatment of inflammatory disorders and cancer metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591251PMC
http://dx.doi.org/10.1038/s41419-019-1735-6DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
cancer metastasis
12
necroptosis inhibitors
8
ripk1 kinase
8
treatment inflammatory
8
necroptosis
6
ripk1
6
pk68
6
kinase
5
discovery potent
4

Similar Publications

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Background And Aim: The NLRP3 inflammasome can be activated after intracerebral hemorrhage (ICH), triggering an inflammatory response in the brain. Chinese herbal medicine Zhongfeng Xingnao Prescription (ZFXN) is commonly used in China for intracerebral hemorrhage treatment. However, the underlying treatment mechanism of it is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!