Prestimulus cortical EEG oscillations can predict the excitability of the primary motor cortex.

Brain Stimul

Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Published: February 2020

Background: The motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) vary considerably at rest, but the mechanism underlying this amplitude variation is largely unknown. We hypothesized that prestimulus EEG oscillations modulate the subsequent MEPs in a state-dependent manner.

Objective: We studied the relationship between prestimulus alpha/beta oscillations and MEPs during eyes open (EO)/closed (EC) conditions, and then modulated TMS intensity in the EO condition. Furthermore, we developed an EEG-triggered TMS system ("informed open-loop") to verify our hypothesis.

Methods: TMS was applied to the left motor cortex. We first compared EEG power differences between high- and low-amplitude MEP epochs in the EO and EC conditions when using a high TMS intensity. Next, we evaluated the effects of varying TMS intensities (high vs. low) on the EEG-MEP relationship. Finally, we used EEG-triggered TMS to determine whether prestimulus EEG oscillations predicted MEP amplitudes.

Results: Prestimulus higher-power alpha/low-beta bands produced larger MEPs only in the high-intensity EO condition. A positive relationship between EEG power and MEP amplitude was observed at C3 and left frontal electrodes. This relationship was obscured when using the lower TMS intensity but was observed in the high-intensity condition at the C3 electrode. EEG-triggered TMS demonstrated that higher alpha power predicted higher MEP amplitudes, but beta power at around 20 Hz did not.

Conclusions: A causal relationship between alpha/low-beta oscillations and MEP amplitudes at rest requires high TMS intensity delivered when eyes are open. This association may allow us to develop a new informed open-loop TMS protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2019.06.013DOI Listing

Publication Analysis

Top Keywords

tms intensity
16
eeg oscillations
12
eeg-triggered tms
12
tms
11
motor cortex
8
prestimulus eeg
8
eyes open
8
eeg power
8
high tms
8
high-intensity condition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!