The prevalence of nonencapsulated Streptococcus pneumoniae (NESp) has increased with the introduction of pneumococcal conjugate vaccines in children; however, the bacteriological characteristics of NESp have not been sufficiently clarified. In this study, NESp strains isolated from the nasopharyngeal carriage of children from four nursery schools in Japan were analyzed for molecular type, antibiotic susceptibility, and biofilm productivity. A total of 152 putative S. pneumoniae strains were identified by optochin-susceptibility analysis, of which 21 were not serotypeable by slide agglutination, quellung reaction, or multiplex PCR. Among these 21 strains, three were lytA-negative and, therefore, not S. pneumoniae. The remaining 18 strains were positive for lytA, ply, pspK, and bile solubility and were confirmed as NESp. Therefore, the isolation rate of NESp in the S. pneumoniae strains in this study was 12.0% (18/149). Molecular-typing analyses classified five strains as two existing sequence types (STs; ST7502 and ST7786), and 13 strains formed four novel STs. Horizontal spread was suspected, because strains with the same ST were often isolated from the same nursery school. The NESp isolates were generally susceptible to most antimicrobials, with the exception of macrolides; however, all isolates possessed more than one abnormal penicillin-binding protein gene. Furthermore, NESp strains were more effective than encapsulated counterparts at forming biofilms, which showed obvious differences in morphology. These data indicated that NESp strains should be continuously monitored as emerging respiratory pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jiac.2019.02.007 | DOI Listing |
Pharmaceutics
May 2023
Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil.
The ability of dermatophytes to live in communities and resist antifungal drugs may explain treatment recurrence, especially in onychomycosis. Therefore, new molecules with reduced toxicity that target dermatophyte biofilms should be investigated. This study evaluated nonyl 3,4-dihydroxybenzoate (nonyl) susceptibility and mechanism of action on planktonic cells and biofilms of and .
View Article and Find Full Text PDFmBio
February 2023
Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, Mississippi, USA.
Streptococcus pneumoniae colonizes the human nasopharynx and causes several diseases. Pneumococcal vaccines target the polysaccharide capsule and prevent most serious disease, but there has been an increase in the prevalence of nonencapsulated S. pneumoniae (NESp).
View Article and Find Full Text PDFJ Infect Chemother
November 2022
Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama City, Wakayama, 641-8509, Japan. Electronic address:
Introduction: Since the introduction of pneumococcal conjugate vaccine, there have been warnings of an increase in infections caused by non-vaccine type of Streptococcus pneumoniae strains. Among them, nonencapsulated Streptococcus pneumoniae (NESp) has been reported to cause invasive infections, especially in children and the elderly. Due to low virulence, however, basic experimental reports on invasive infections are limited.
View Article and Find Full Text PDFJ Clin Lab Anal
April 2022
Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
Background: Some streptococci strains identified as Streptococcus pneumoniae (S. pneumoniae) by routine clinical methods exhibiting negative Quellung reaction results may belong to other species of viridans group streptococci or non-typeable S. pneumoniae.
View Article and Find Full Text PDFInfect Immun
February 2022
Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical Universitygrid.412857.d, Wakayama, Japan.
We established an infant mouse model for colonization and transmission by nonencapsulated Streptococcus pneumoniae (NESp) strains to gain important information about its virulence among children. Invasive pneumococcal diseases have decreased dramatically since the worldwide introduction of pneumococcal capsular polysaccharide vaccines. Increasing prevalence of nonvaccine serotypes, including NESp, has been highlighted as a challenge in treatment strategy, but the virulence of NESp is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!