Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.

Trends Biotechnol

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food, and Environmental Quality Sciences, PO, Box 12, Rehovot 76100, Israel. Electronic address:

Published: November 2019

Breeding crops for high yield and superior adaptability to new and variable climates is imperative to ensure continued food security, biomass production, and ecosystem services. Advances in genomics and phenomics are delivering insights into the complex biological mechanisms that underlie plant functions in response to environmental perturbations. However, linking genotype to phenotype remains a huge challenge and is hampering the optimal application of high-throughput genomics and phenomics to advanced breeding. Critical to success is the need to assimilate large amounts of data into biologically meaningful interpretations. Here, we present the current state of genomics and field phenomics, explore emerging approaches and challenges for multiomics big data integration by means of next-generation (Next-Gen) artificial intelligence (AI), and propose a workable path to improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2019.05.007DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
genomics phenomics
8
accelerating climate
4
climate resilient
4
resilient plant
4
plant breeding
4
breeding applying
4
applying next-generation
4
next-generation artificial
4
intelligence breeding
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

Introduction: Screening diabetic retinopathy (DR) for timely management can reduce global blindness. Many existing DR screening programs worldwide are non-digital, standalone, and deployed with grading retinal photographs by trained personnel. To integrate the screening programs, with or without artificial intelligence (AI), into hospital information systems to improve their effectiveness, the non-digital workflow must be transformed into digital.

View Article and Find Full Text PDF

Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.

Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!