Structure of PCNA in complex with DNMT1 PIP box reveals the basis for the molecular mechanism of the interaction.

Biochem Biophys Res Commun

Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. Electronic address:

Published: August 2019

DNMT1 is a C5-DNA methyltransferase that plays a pivotal role in DNA methylation maintenance. During early and mid S-phase, DNMT1 accumulates at DNA replication sites by binding to proliferating cell nuclear antigen (PCNA), an essential factor for DNA replication, through a PIP box motif. However, the molecular mechanism by which the DNMT1 PIP box motif binds to PCNA remains unclear. Here, we report the crystal structure of PCNA bound to DNMT1 PIP box peptide. The structure reveals the detailed interaction between PCNA and DNMT1 PIP box; conserved glutamine and hydrophobic/aromatic residues in the PIP box are recognized by the Q- and hydrophobic pockets of PCNA, respectively. The structure also shows novel intramolecular interactions within the PIP box motif, which stabilize the helix conformation in the PIP box. Our data provide structural insight into the recruitment of DNMT1 to replication sites by PCNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.06.060DOI Listing

Publication Analysis

Top Keywords

pip box
32
dnmt1 pip
16
box motif
12
structure pcna
8
pip
8
box
8
molecular mechanism
8
dna replication
8
replication sites
8
dnmt1
7

Similar Publications

The current project was designed to develop piperine-loaded solid lipid microparticles (SLMs) to assess the anti-arthritic potential of piperine (PIP). Variable proportions of carnauba wax, beeswax, and tween 80 were employed for preparing SLMs by using the solvent evaporation technique. The developed formulations were subjected to particle size measurements, entrapment efficiency (EE), and zeta potential (ZP) determination.

View Article and Find Full Text PDF

ESCARGOT: An AI Agent Leveraging Large Language Models, Dynamic Graph of Thoughts, and Biomedical Knowledge Graphs for Enhanced Reasoning.

Bioinformatics

January 2025

Department of Computational Biomedicine, Center for Artificial Intelligence Research and Education, Cedars Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G-541H, West Hollywood, 90069, CA, USA.

Motivation: LLMs like GPT-4, despite their advancements, often produce hallucinations and struggle with integrating external knowledge effectively. While Retrieval-Augmented Generation (RAG) attempts to address this by incorporating external information, it faces significant challenges such as context length limitations and imprecise vector similarity search. ESCARGOT aims to overcome these issues by combining LLMs with a dynamic Graph of Thoughts and biomedical knowledge graphs, improving output reliability and reducing hallucinations.

View Article and Find Full Text PDF

Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair.

View Article and Find Full Text PDF

Background And Objectives: The pharmacokinetics (PK) of piperacillin/tazobactam (PIP/TAZ) is highly variable across different patient populations and there are controversies regarding non-linear elimination as well as the fraction unbound of PIP (f). This has led to a plethora of subgroup-specific models, increasing the risk of misusing published models when optimising dosing regimens. In this study, we aimed to develop a single model to simultaneously describe the PK of PIP/TAZ in diverse patient populations and evaluate the current dosing recommendations by predicting the PK/pharmacodynamics (PD) target attainment throughout life.

View Article and Find Full Text PDF

Drug resistance is a major obstacle in cancer treatment. Herein, four novel organometallic complexes, with the general formula [Ru(η--cymene)(HL)Cl]Cl and [Rh(η-CMe)(HL)Cl]Cl, were developed to target multidrug-resistant (MDR) cancer cells, where HL denotes 8-hydroxyquinoline-derived Mannich bases (HQCl-pyr and HQCl-pip). The aim of the complexation was to obtain compounds with improved drug-like properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!