A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. | LitMetric

A system of concentrated solar energy for pyrolysis of date palm waste to biochar is designed and simulated using SuperPro Designer v8.5. Both economic and environmental sustainability implications are evaluated by bench-marking with the conventional process (electric heating-based pyrolysis). Economic analysis shows that this process is more economically viable than the conventional process, with payback time (PBT) of 4 years and 132 days, internal rate of return (IRR) of 14.8%, return on investment (ROI) of 22.9% and gross margin of 35.5%. Environmental impact assessment shows that CO emissions from concentrated solar energy-based pyrolysis accounts for only 38% of that of the conventional pyrolysis, indicating that concentrated solar energy pyrolysis is more environmentally friendly. Sensitivity analysis shows that PBT is more sensitive to changes in biochar selling price than changes in the cost of acquiring date palm waste. This process presents sustainable opportunities for biochar production while reducing life cycle emissions and costs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.05.022DOI Listing

Publication Analysis

Top Keywords

concentrated solar
16
palm waste
12
pyrolysis palm
8
waste biochar
8
sustainability implications
8
solar energy
8
energy pyrolysis
8
conventional process
8
pyrolysis
6
biochar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!