Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36-63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591965 | PMC |
http://dx.doi.org/10.1186/s13071-019-3575-8 | DOI Listing |
Molecules
January 2025
School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
Malaria, caused by species and transmitted by mosquitoes, continues to pose a significant global health threat. Pipecolisporin, a cyclic hexapeptide isolated from , has emerged as a promising antimalarial candidate due to its potent biological activity and stability. This study explores the synthesis, antimalarial activity, and computational studies of pipecolisporin, aiming to better understand its therapeutic potential.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.
View Article and Find Full Text PDFMalar J
January 2025
West African Centre for Cell Biology of Infectious Pathogens, Accra University of Ghana, Volta Rd, Accra, Ghana.
Background: Malaria remains a leading cause of death worldwide, claiming over 600,000 lives each year. Over 90% of these deaths, mostly among children under 5 years, occur in sub-Saharan Africa and are caused by Plasmodium falciparum. The merozoites stage of the parasite, crucial for asexual development invade erythrocytes through ligand-receptor interactions.
View Article and Find Full Text PDFACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!