Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera.

BMC Plant Biol

Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.

Published: June 2019

Background: The Asia lotus (Nelumbo nucifera Gaertn.) is an ornamental aquatic plant with high economic value. Flower colour is an important ornamental trait, with much of N. nucifera breeding focusing on its yellow flowers. To explore the yellow flower colouration mechanism in N. nucifera, we analysed its pigment constituents and content, as well as gene expression in the flavonoid pathway, in two N. nucifera cultivars.

Results: We performed metabolomic and gene expression analyses in two N. nucifera cultivars with yellow and white flowers, Molinqiuse (MLQS) and Yeguangbei (YGB), respectively, at five stages of flower colouration. Based on phenotypic observation and metabolite analyses, the later stages of flower colouration (S3-S5) were determined to be key periods for differences between MLQS and YGB, with dihydroflavonols and flavonols differing significantly between cultivars. Dihydroquercetin, dihydrokaempferol, and isorhamnetin were significantly higher in MLQS than in YGB, whereas kaempferol was significantly higher in YGB. Most of the key homologous structural genes in the flavonoid pathway were significantly more active in MLQS than in YGB at stages S1-S4.

Conclusion: In this study, we performed the first analyses of primary and secondary N. nucifera metabolites during flower colouration, and found that isorhamnetin and kaempferol shunting resulted in petal colour differences between MLQS and YGB. Based on our data integration analyses of key enzyme expression in the putative flavonoid pathways of the two N. nucifera cultivars, NnFLS gene substrate specificity and differential expression of NnOMTs may be related to petal colour differences between MLQS and YGB. These results will contribute to determining the mechanism of yellow flower colouration in N. nucifera, and will improve yellow petal colour breeding in lotus species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592004PMC
http://dx.doi.org/10.1186/s12870-019-1886-8DOI Listing

Publication Analysis

Top Keywords

flower colouration
20
mlqs ygb
20
flavonoid pathway
12
differences mlqs
12
petal colour
12
nucifera
9
yellow petal
8
aquatic plant
8
nelumbo nucifera
8
yellow flower
8

Similar Publications

Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.

View Article and Find Full Text PDF

Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers.

Nat Plants

January 2025

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species.

View Article and Find Full Text PDF

Flower colour contrast, 'spectral purity' and a red herring.

Plant Biol (Stuttg)

January 2025

Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.

Nature offers a bewildering diversity of flower colours. Understanding the ecology and evolution of this fantastic floral diversity requires knowledge about the visual systems of their natural observers, such as insect pollinators. The key question is how flower colour and pattern can be measured and represented to characterise the signals that are relevant to pollinators.

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

In recent years, global trends indicate consumer interest in functional foods. Thus, there is a trend to replace the use of artificial colors with natural colors that, in addition to being attractive to consumers, provide benefits to the biological functions of the human organism. The objective of this research was the solvent extraction of a natural dye from the roselle flower, its identification and evaluation of its behavior at different pH and temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!