Pulmonary Arterial Hypertension Due to NPR-C Mutation: A Novel Paradigm for Normal and Pathologic Remodeling?

Int J Mol Sci

St Martha's Regional Hospital, Dalhousie University, Antigonish, B2G 2G7 NS, Canada.

Published: June 2019

Idiopathic Pulmonary Arterial Hypertension (IPAH) is a deadly and disabling disease characterized by severe vascular remodeling of small pulmonary vessels by fibroblasts, myofibroblasts and vascular smooth muscle cell proliferation. Recent studies suggest that the Natriuretic Peptide Clearance Receptor (NPR-C) signaling pathways may play a crucial role in the development of IPAH. Reduced expression or function of NPR-C signaling in pulmonary artery smooth muscle cells may contribute to the pulmonary vascular remodeling, which is characteristic of this disease. The likely mechanisms may involve an impaired interaction between NPR-C, specific growth factors and other signal transduction pathways including but not limited to Gqα/mitogen-activated protein kinase (MAPK)/PI3K and AKT signaling. The resulting failure of growth suppression in pulmonary artery smooth muscle cells provides critical clues to the cellular pathobiology of IPAH. The reciprocal regulation of NPR-C signaling in models of tissue remodeling may thus provide new insights to our understanding of IPAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628360PMC
http://dx.doi.org/10.3390/ijms20123063DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
npr-c signaling
12
pulmonary arterial
8
arterial hypertension
8
vascular remodeling
8
pulmonary artery
8
artery smooth
8
muscle cells
8
pulmonary
6
npr-c
5

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!