AI Article Synopsis

  • A novel bipolar-electrode electrochemical method was developed to create molybdenum disulfide quantum dots (MoS QDs) from MoS powder and phosphate buffer, producing nanosheets as a by-product.
  • The method allows for flexibility in precursor shape and size, promoting defect generation and phase changes in MoS, which ultimately leads to the formation of QDs with high photoluminescence and small size.
  • The resulting MoS QDs show low cytotoxicity and excellent dispersion for potential applications in cell imaging, while the byproduct nanosheets exhibit strong electromagnetic wave absorption, outperforming other similar materials.

Article Abstract

A convenient bipolar-electrode (BPE) electrochemical method was engineered to produce molybdenum disulfide (MoS) quantum dots (QDs) using pure phosphate buffer (PBS) as the electrolyte and the MoS powder as the precursor. Meanwhile, the corresponding by-product precipitate was studied, in which MoS nanosheets were observed. The BPE design would not be restricted by the shape and size of the MoS precursor. It could lead to the defect generation and 2H → 1T phase variation of the MoS, resulting in the formation of nanosheets and finally the QDs. The as-prepared MoS QDs exhibited high photoluminescence (PL) quantum yield of 13.9% and average lateral size of 4.4 ± 0.2 nm, respectively. Their excellent PL property, low cytotoxicity, and good aqueous dispersion offer promising applicability in PL staining and cell imaging. Meanwhile, the as-obtained byproduct containing the nanosheets could be used as an effective electromagnetic wave (EMW) absorber. The minimum reflection loss (RL) value was -54.13 dB at the thickness of 3.3 mm. The corresponding bandwidth with efficient attenuation (<-10 dB) was up to 7.04 GHz (8.8-15.84 GHz). The as-obtained EMW performance was far superior over most previously reported MoS-based nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630415PMC
http://dx.doi.org/10.3390/nano9060906DOI Listing

Publication Analysis

Top Keywords

molybdenum disulfide
8
quantum dots
8
mos
6
disulfide quantum
4
dots prepared
4
prepared bipolar-electrode
4
bipolar-electrode electrochemical
4
electrochemical scissoring
4
scissoring convenient
4
convenient bipolar-electrode
4

Similar Publications

SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance.

View Article and Find Full Text PDF

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS Nanosheets.

Adv Mater

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

Article Synopsis
  • During fast-charging, uneven lithium plating on graphite anodes leads to performance issues and safety risks for lithium-ion batteries due to the formation of a passivation layer known as the solid-electrolyte interphase (SEI).
  • A molybdenum disulfide (MoS) coating on natural graphite modifies the SEI properties, resulting in faster charging times and improved long-term cycling performance by enhancing lithium transport and reducing interfacial resistance.
  • The MoS-NG anode demonstrates superior fast-charging capabilities, achieving a charging time of 14.7 minutes at 80% state of charge, making it a viable option for electric vehicle applications over 300 cycles without sacrificing energy density.
View Article and Find Full Text PDF

Atomic scale, scanning transmission electron microscopy (STEM) analysis of the moiré structures in twisted epitaxial gold nanodiscs encapsulated in twisted bilayer molybdenum disulfide is presented. High angle annular dark field STEM imaging reveals that the period of the moiré patterns between gold and molybdenum disulfide varies with different twist angles of the bilayer molybdenum disulfide, ranging from 1.80 nm (epitaxial alignment of gold) to 1.

View Article and Find Full Text PDF

The design of mixed-dimensional heterostructures has emerged to be a new frontier of research as it induces exciting physical/chemical properties that extend beyond the fundamental properties of single dimensional systems. Therefore, rational design of heterostructured materials with novel surface chemistry and tailored interfacial properties appears to be very promising for the devices such as the gas sensors. Here, a highly sensitive gas sensor device is constructed by employing heterostructures of boron doped molybdenum disulfide quantum dots (B-MoS Qdots) assembled into the matrix of TiCT MXene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!