A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increasing resolution of airborne pollen forecasting at a discrete sampled area in the southwest Mediterranean Basin. | LitMetric

AI Article Synopsis

  • Daily pollen levels vary and affect allergy symptoms, influenced by local vegetation, flowering times, geography, and climate.
  • Since 1991, pollen levels have been monitored in Malaga, Spain, with one station providing continuous data, while others have been less consistent.
  • The study developed spatial models to predict pollen concentrations across Malaga province using data from the main station, creating an allergy alert system to inform residents in areas without direct monitoring.

Article Abstract

Daily fluctuations of the airborne pollen concentrations produce variations on symptomatology in allergic population. Such fluctuations are influenced by local vegetal coverage, flowering phenology, geography and climatology. Since 1991, airborne pollen of Malaga province (southern Spain) has been monitored in 7 different locations. Malaga station has been kept operational uninterruptedly throughout the studied period, while the rest of the stations only worked in periods of 2-4 years. Weekly, its pollen information is updated online to inform the population in order to prevent allergic diseases. Increasing the spatial resolution of pollen information would be very useful for allergic population living at unsampled locations. Due to the impossibility of keeping operational a high number of pollen stations covering the whole province of Malaga, the aim of this study is to create spatial models to extrapolate and forecast the pollen concentrations to Malaga province by using the concentrations registered at the capital as unique input. To do so, the relationships obtained between the airborne pollen concentrations detected at Malaga city and those detected at the other stations have been used to elaborate models for the main pollen types registered at the province. These models were spatially interpolated all over the province by using co-kriging techniques and the Compensated Thermicity Index as covariable. As result of this work, pollen distribution of the 8 most prevalent taxa has been depicted all over the whole Malaga province and an allergy alert system has been set up to extrapolate pollen information from Malaga to the whole province.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.06.019DOI Listing

Publication Analysis

Top Keywords

airborne pollen
16
malaga province
16
pollen concentrations
12
pollen
11
allergic population
8
pollen malaga
8
malaga
7
province
7
increasing resolution
4
airborne
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!