MicroRNAs (miRNAs), as a class of naturally occurring RNAs, play important roles in cardiac physiology and pathology. There are many miRNAs that show multifarious expression patterns during cardiomyocyte genesis. Here, we focused on the MIR148A family, which is composed of MIR148A, MIR148B and MIR152, and shares the same seed sequences. The expression levels of all MIR148A family members progressively increased during the differentiation of human embryonic stem cells (hESCs) into cardiomyocytes. The deletion of MIR148A family (MIR148A-TKO) resulted in a decreased proportion of cardiomyocytes after cardiac induction, which was restored by the ectopic expression of MIR148A family members. Transcriptome analyses indicated that the MIR148A family could partially repress paraxial mesodermal differentiation from primitive streak cells. In turn, these miRNAs promoted lateral mesoderm and cardiomyocyte differentiation. Furthermore, the NOTCH ligand Delta-like 1 (DLL1) was validated as the target gene of MIR148A family, and knockdown of DLL1 could promote the cardiomyocyte differentiation of MIR148A-TKO hESCs. Thus, our results demonstrate MIR148A family could promote cardiomyocyte differentiation by inhibiting undesired paraxial mesoderm lineage commitment, which improves our understanding on cardiomyocyte differentiation from hESCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2019.06.014 | DOI Listing |
Mol Ther Nucleic Acids
June 2023
Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 215000, China.
Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) represent a promising source of human ECs urgently needed for the study of cardiovascular disease mechanisms, cell therapy, and drug screening. This study aims to explore the function and regulatory mechanism of the miR-148/152 family consisting of miR-148a, miR-148b, and miR-152 in hPSC-ECs, so as to provide new targets for improving EC function during the above applications. In comparison with the wild-type (WT) group, miR-148/152 family knockout (TKO) significantly reduced the endothelial differentiation efficiency of human embryonic stem cells (hESCs), and impaired the proliferation, migration, and capillary-like tube formatting abilities of their derived ECs (hESC-ECs).
View Article and Find Full Text PDFClin Epigenetics
March 2023
Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
Background: To understand the molecular mechanisms involved in regulation of DNA methyltransferases (DNMTs) by metformin in non-small cell lung cancer (NSCLC) cells.
Methods: Expression levels of DNMTs in response to metformin were analyzed in NSCLC cells. MicroRNAs regulating expression of DNMTs at the post-transcriptional level were searched using miRNA-target databases (miRDB and miRTarBase), TCGA RNASeqV2 lung cancer data, and miRNA-seq.
Clin Nutr
December 2022
Department of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama-shi, Japan.
Cancers (Basel)
August 2022
Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development.
View Article and Find Full Text PDFTransl Androl Urol
July 2022
Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Background: We aimed to explore miR-148a exerts a tumor suppressor effect and arsenic trioxide (AsO) sensitivity on renal cell carcinoma (RCC).
Methods: We performed polymerase chain reaction (PCR) on 42 pairs of tumor and paracancerous samples collected from RCC patients to investigate the miR-148a expression; meanwhile, we analyzed the interplay between clinical indicators and miR-148a expression of RCC. Then, the influence of miR-148a overexpression on the functions of RCC cells were analyze using transwell migration assay, Cell Counting Kit-8 (CCK-8), and cell wound healing assay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!