The mechanism by which rosiglitazone (ROSI: a thiazolidinedione (TZD)) affects steroid production in undifferentiated human granulosa cells is not known. In this study, cultured human cumulus granulosa cells were exposed to ROSI and pharmacological inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2), epidermal growth factor receptor (EGFR) and peroxisome proliferator-activated receptor gamma (PPARγ) signalling pathways. Expression of progesterone biosynthetic enzymes, PPARγ and PPARα, progesterone production and ERK1/2 activation were analysed. After 48h, 30μM ROSI increased STAR, 3βHSD and PPARγ mRNA and elevated progesterone production in human cumulus granulosa cells. Addition of ERK1/2 (U0126), EGFR (AG1478) and PPARγ (GW9662) inhibitors prevented the ROSI-induced STAR mRNA expression and progesterone production after 48h. Inhibition of PPARγ, but not EGFR or ERK1/2, decreased the PPARγ mRNA levels induced by ROSI in human cumulus granulosa cells after 48h. On the other hand, U0126 and GW9662 prevented the ROSI-induced increase in PPARγ transcripts after 6h. Western blot analysis showed that ROSI induced a rapid ERK1/2 activation, which was prevented by inhibition of ERK1/2, EGFR and PPARγ in human cumulus granulosa cells. Overall, these data suggested that PPARγ, EGFR and ERK1/2 were involved in the stimulatory effect of ROSI on STAR expression and progesterone production in undifferentiated human cumulus granulosa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD19108DOI Listing

Publication Analysis

Top Keywords

granulosa cells
28
human cumulus
24
cumulus granulosa
24
progesterone production
20
expression progesterone
12
pparγ
9
production undifferentiated
8
undifferentiated human
8
erk1/2 activation
8
pparγ mrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!