Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nowadays the development of sustainable technologies for the effective production of polymeric materials that can be used as biomaterials will be of importance. In this work, cellulose (CEL) was purified from potato peel waste (PPW) and used to produce electrospun nanofibers for tissue engineering applications. The purified CEL was solubilized in copper ethylenediamine (Cuen) and the electrospun nanofibers was produced through electrospinning technique in diameter range of 250-500 nm at electrical field strength of 20 kV. To confirm the applicability of the electrospun CEL scaffolds in tissue engineering, in vitro BALB-3T3 fibroblastic cell adhesion and cell proliferation tests were employed in this study. Cell viability was evaluated by staining with ethidium bromide (EtBr) and acridine orange (AO) to evaluate the possible effects of cytotoxicity of the CNF scaffolds. Fluorescence studies confirmed that BALB-3T3 viable cells attached and spread throughout the CEL scaffold. The attachment and spreading of viable cells suggests that electrospun CEL scaffolds support growth of BALB-3T3 fibroblasts cells and suggests that PPW can be a useful source of raw material for the production of scaffolds for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2019.1636351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!