Differential interference contrast (DIC) microscopy is a powerful imaging tool that is most commonly employed for imaging microscale objects using visible-range light. The purpose of this protocol is to detail a proven method for preparing plasmonic nanoparticle samples and performing single particle spectroscopy on them with DIC microscopy. Several important steps must be followed carefully in order to perform repeatable spectroscopy experiments. First, landmarks can be etched into the sample substrate, which aids in locating the sample surface and in tracking the region of interest during experiments. Next, the substrate must be properly cleaned of debris and contaminants that can otherwise hinder or obscure examination of the sample. Once a sample is properly prepared, the optical path of the microscope must be aligned, using Kohler Illumination. With a standard Nomarski style DIC microscope, rotation of the sample may be necessary, particularly when the plasmonic nanoparticles exhibit orientation-dependent optical properties. Because DIC microscopy has two inherent orthogonal polarization fields, the wavelength-dependent DIC contrast pattern reveals the orientation of rod-shaped plasmonic nanoparticles. Finally, data acquisition and data analyses must be carefully performed. It is common to represent DIC-based spectroscopy data as a contrast value, but it is also possible to present it as intensity data. In this demonstration of DIC for single particle spectroscopy, the focus is on spherical and rod-shaped gold nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.3791/59411DOI Listing

Publication Analysis

Top Keywords

plasmonic nanoparticles
12
dic microscopy
12
differential interference
8
interference contrast
8
single particle
8
particle spectroscopy
8
dic
6
sample
5
performing spectroscopy
4
plasmonic
4

Similar Publications

Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Higher-order effects and validity of the point-dipole approximation for conjugated extended molecular emitters near plasmonic nanostructures.

J Chem Phys

January 2025

Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.

Rapid advancements in nanotechnology have allowed for the characterization of single molecules by placing them in the vicinity of nanoplasmonic structures that are known to confine light to sub-molecular scales. In this study, we introduce a theoretical framework that captures higher-order effects, and we explore the limits of the standard description of a molecular emitter as a point-dipole. We particularly focus on the role played by the emitter chain length and electron conjugation.

View Article and Find Full Text PDF

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.

J Colloid Interface Sci

January 2025

Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:

Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!