Neural cells of the bovine retina contain specific, high-affinity receptors for insulin. When solubilized and wheat-germ purified, these receptors exhibit a kinase activity that is capable of phosphorylating the receptor's beta-subunit (autophosphorylation) and a tyrosine-containing exogenous substrate, poly (Glu, Tyr) 4:1. Studies of the structure of retinal insulin receptors revealed the existence of two insulin receptor subpopulations. For these populations, the apparent molecular weights of the alpha-subunit were 120- and 133 kDa. This structural heterogeneity does not appear to be related to the presence of vascular contamination and stands in contrast to the brain and liver where a single alpha-subunit type was found (120 kDa for brain and 133 kDa for liver). In addition to being distinguishable by their molecular weights, the two populations of retinal insulin receptors could be distinguished in terms of (a) their solubility in Triton X-100, (b) glycosylation, and (c) recognition by anti-insulin receptor antibody. Despite these structural differences, the two populations of retinal insulin receptors appear to have similar insulin binding affinities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-4835(87)80099-4DOI Listing

Publication Analysis

Top Keywords

retinal insulin
16
insulin receptors
16
structural heterogeneity
8
molecular weights
8
133 kda
8
populations retinal
8
receptors
6
insulin
6
retinal
4
receptors structural
4

Similar Publications

Purpose: To report a case of a diabetic patient undergoing rapid glycemic improvement characterized by the development and resolution of cotton wool spot (CWS), with detailed structural and vascular assessment using wide-field multimodal imaging, including wide-field color fundus photography and wide-field optical coherence tomography angiography (OCTA).

Observations: A 47-year-old man with poorly controlled Type 2 diabetes mellitus developed CWS in his right eye 3 months after initiating insulin therapy, which coincided with a significant reduction in HbA1c levels. Wide-field color fundus photography and wide-field OCTA were performed before, during, and after CWS appeared.

View Article and Find Full Text PDF

Obesity and retinal microvasculature dysfunction are linked and impact visual acuity. The aim of this study was to determine the relationship between the HOMA-IR score and the presence of vascular dysfunction (capillary perfusion and flux index) of the optic nerve head (ONH) of the retina in obese patients and to determine its diagnostic performance to predict vascular dysfunction. A case-control study was conducted in 2022 involving individuals from obese and non-obese groups.

View Article and Find Full Text PDF

Purpose: To investigate the influence of systemic and serum measures and hypoglycemic medications on the initial presentation and ongoing development of diabetic retinopathy (DR) and diabetic macular edema (DME).

Design: Using Veterans Affairs electronic health records, we identified patients with a diabetes mellitus diagnosis and at least one eye examination between 1997 and 2010. After adjusting for sociodemographic factors, we used multivariable Cox regression models to evaluate the association of hemoglobin A1c (HbA1c) levels, blood pressure, albuminuria, blood urea nitrogen (BUN), and prescribed medications with the subsequent diagnosis of 1) any diabetic eye disease (defined for this analysis as DR and/or DME, 2) diabetic retinopathy, and 3) diabetic macular edema.

View Article and Find Full Text PDF

Diabetic macular edema (DME) is a significant cause of vision loss. The development of peripheral non-perfusion (PNP) might be associated with the natural course, severity, and treatment of DME. The present study seeks to understand the predictive power of central macular changes and clinico-demographic features for PNP in patients with clinically significant DME.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!