Background: Debates over whether climate change could lead to the amplification of Lyme disease (LD) risk in the future have received much attention. Although recent large-scale disease mapping studies project an overall increase in Lyme disease risk as the climate warms, such conclusions are based on climate-driven models in which other drivers of change, such as land-use/cover and host population distribution, are less considered.
Objectives: The main objectives were to project the likely future ecological risk patterns of LD in Europe under different assumptions about future socioeconomic and climate conditions and to explore similarity and uncertainty in the projected risks.
Methods: An integrative, spatially explicit modeling study of the ecological risk patterns of LD in Europe was conducted by applying recent advances in process-based modeling of tick-borne diseases, species distribution mapping, and scenarios of land-use/cover change. We drove the model with stakeholder-driven, integrated scenarios of plausible future socioeconomic and climate change [the Shared Socioeconomic Pathway (SSPs) combined with the Representative Concentration Pathways (RCPs)].
Results: The model projections suggest that future temperature increases may not always amplify LD risk: Low emissions scenarios (RCP2.6) combined with a sustainability socioeconomic scenario (SSP1) resulted in reduced LD risk. The greatest increase in risk was projected under intermediate (RCP4.5) rather than high-end (RCP8.5) climate change scenarios. Climate and land-use change were projected to have different roles in shaping the future regional dynamics of risk, with climate warming being likely to cause risk expansion in northern Europe and conversion of forest to agriculture being likely to limit risk in southern Europe.
Conclusions: Projected regional differences in LD risk resulted from mixed effects of temperature, land use, and host distributions, suggesting region-specific and cross-sectoral foci for LD risk management policy. The integrated model provides an improved explanatory tool for the system mechanisms of LD pathogen transmission and how pathogen transmission could respond to combined socioeconomic and climate changes. https://doi.org/10.1289/EHP4615.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792373 | PMC |
http://dx.doi.org/10.1289/EHP4615 | DOI Listing |
J Clin Rheumatol
October 2024
From the Gateway Immunosciences and RUTGERS-Robert Wood Johnson Medical School, New Brunswick, NJ.
Lyme disease is commonly associated with musculoskeletal features, inflammatory and noninflammatory. The precise pathogenesis of the clinical features of this infection are complex and often multiple. A better understanding of how Borrelia burgdorferi causes these musculoskeletal manifestations is necessary in order to determine the proper treatment and eschew that which is unlikely to work, often associated with toxicities.
View Article and Find Full Text PDFmBio
December 2024
School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA.
The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
Despite its importance in pathogenesis, the hematogenous dissemination pathway of is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In -infected monolayers, we observed ~55% of wild-type spirochetes crossing the monolayer.
View Article and Find Full Text PDFJ Biophotonics
December 2024
Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii, with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Veterinary Medicine, Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Chair of Bacteriology and Mycology, Ludwig-Maximilians-Universität Munich, Oberschleißheim, Bavaria, Germany.
Diagnosis of equine Lyme borreliosis (LB), an infection caused by members of the Borrelia burgdorferi sensu lato complex (Bbsl), is challenging due to the nonspecific clinical signs of the disease and due to the variety of non-standardized serological tests. Specific vaccine-induced antibodies against LB, providing an effective protection against the infection, complicate the issue further. The standard for the detection of specific antibodies against Bbsl is a two-tier test system based on an enzyme-linked immunosorbent assay (ELISA) or indirect fluorescent antibody test (IFA) for antibody screening combined with a qualitative, highly specific immunoassay (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!