In this study, we aim to investigat the effect of microgravity on osteoblast differentiation in osteoblast-like cells (MC3T3-E1). In addition, we explored the response mechanism of nuclear factor-kappa B (NF-κB) signaling pathway to "zero- " in MC3T3-E1 cells under the simulated microgravity conditions. MC3T3-E1 were cultured in conventional (CON) and simulated microgravity (SMG), respectively. Then, the expression of the related osteoblastic genes and the specific molecules in NF-κB signaling pathway were measured. The results showed that the mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin (OCN) and type Ⅰ collagen (CoL-Ⅰ) were dramatically decreased under the simulated microgravity. Meanwhile, the NF-κB inhibitor α (IκB-α) protein level was decreased and the expressions of phosphorylation of IκB-α (p-IκB-α), p65 and phosphorylation of p65 (p-p65) were significantly up-regulated in SMG group. In addition, the IL-6 content in SMG group was increased compared to CON. These results indicated that simulated microgravity could activate the NF-κB pathway to regulate MC3T3-E1 cells differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929975 | PMC |
http://dx.doi.org/10.7507/1001-5515.201801019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!