Vibrational wavenumbers of pyridine adsorbed on a silver electrode have been correlated to the calculated ones from different theoretical approaches based on DFT methods. The vibrational tuning caused by the electrode potential has been simulated by means of pyridine-silver clusters with different densities of charge or, alternatively, under applied external electric fields. Both methodologies predict correctly a qualitative red-shift of the vibrational wavenumbers at negative potentials. As a result, harmonic frequency calculations performed at the B3LYP/LanL2DZ level of theory by using a linear [Ag Py] complex model with different densities of charge ( = ) have exhibited the best agreement with the experimental observations although the tuning amplitudes are overestimated. Electric fields calculations are unable to account for subtle details observed in the spectra related to the differentiated chemical nature of the metal-molecule bond at positive or negative potentials with respect to the potential of zero charge of the electrode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560080 | PMC |
http://dx.doi.org/10.3389/fchem.2019.00423 | DOI Listing |
Phys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Physics, Deshbandhu College (University of Delhi), New Delhi 110019, India.
The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.
View Article and Find Full Text PDFData Brief
February 2025
Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.
The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:
The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.
View Article and Find Full Text PDFAnal Biochem
December 2024
Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland. Electronic address:
Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation of glioblastoma G4 (GBM) and two types of meningiomas (atypical - MAtyp and angiomatous - MAng) were done using Fourier Transform InfraRed (FTIR) spectroscopy, combined with statistical, multivariate, machine learning and rate of spectrum changes methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!