T cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens. The recent genomic characterization of the T cell receptor β (TRB) locus has allowed us to infer the structure of this locus from the draft genome sequences of its wild and domestic Bactrian congeners, and . The general structural organization of the wild and domestic Bactrian TRB locus is similar to that of the dromedary, with a pool of TRBV genes positioned at the 5' end of D-J-C clusters, followed by a single TRBV gene located at the 3' end with an inverted transcriptional orientation. Despite the fragmented nature of the assemblies, comparative genomics reveals the existence of a perfect co-linearity between the three Old World camel TRB genomic sequences, which enables the transfer of information from one sequence to another and the filling of gaps in the genomic sequences. A virtual camelid TRB locus is hypothesized with the presence of 33 TRBV genes distributed in 26 subgroups. Likewise, in the artiodactyl species, three in-tandem D-J-C clusters, each composed of one TRBD gene, six or seven TRBJ genes, and one TRBC gene, are placed at the 3' end of the locus. As reported in the ruminant species, a group of four functional TRY genes at the 5' end and only one gene at the 3' end, complete the camelid TRB locus. Although the gene content is similar, differences are observed in the TRBV functional repertoire, and genes that are functional in one species are pseudogenes in the other species. Hence, variations in the functional repertoire between dromedary, wild and domestic Bactrian camels, rather than differences in the gene content, may represent the molecular basis explaining the disparity in the TRB repertoire between the species. Finally, our data contribute to the knowledge about the evolutionary history of Old World camelids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558370 | PMC |
http://dx.doi.org/10.3389/fgene.2019.00482 | DOI Listing |
BMC Genomics
October 2024
Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene.
View Article and Find Full Text PDFCommun Biol
October 2024
Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
Bridging the gap between genotype and phenotype in GWAS studies is challenging. A multitude of genetic variants have been associated with immune-related diseases, including cancer, yet the interpretability of most variants remains low. Here, we investigate the quantitative components in the T cell receptor (TCR) repertoire, the frequency of clusters of TCR sequences predicted to have common antigen specificity, to interpret the genetic associations of diverse human diseases.
View Article and Find Full Text PDFAnimals (Basel)
September 2024
Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy.
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
National Medical Research Center for Hematology, 125167 Moscow, Russia.
Tumor cells of acute lymphoblastic leukemia (ALL) may have various genetic abnormalities. Some of them lead to a complete loss of certain genes. Our aim was to reveal biallelic deletions of genes in Ph-negative T-ALL.
View Article and Find Full Text PDFBMC Genomics
July 2024
Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!