Attenuation of Human Respiratory Viruses by Synonymous Genome Recoding.

Front Immunol

RNA Viruses Section, LID, NIAID, NIH, Bethesda, MD, United States.

Published: October 2020

Using computer algorithms and commercial DNA synthesis, one or more ORFs of a microbial pathogen such as a virus can be recoded and deoptimized by several strategies that may involve the introduction of up to thousands of nucleotide (nt) changes without affecting amino acid (aa) coding. The synonymous recoding strategies that have been applied to RNA viruses include: deoptimization of codon or codon-pair usage, which may reduce protein expression among other effects; increased content of immunomodulatory CpG and UpA RNA, which increase immune responses and thereby restrict viral replication; and substitution of serine and leucine codons with synonymous codons for which single-nt substitutions can yield nonsense codons, thus limiting evolutionary potential. This can reduce pathogen fitness and create potential live-attenuated vaccines that may have improved properties. The combined approach of genome recoding, synthetic biology, and reverse genetics offers several advantages for the generation of attenuated RNA viruses. First, synonymous recoding involves many mutations, which should reduce the rate and magnitude of de-attenuation. Second, increasing the amount of recoding can provide increased attenuation. Third, because there are no changes at the aa level, all of the relevant epitopes should be expressed. Fourth, attenuation frequently does not compromise immunogenicity, suggesting that the recoded viruses have increased immunogenicity per infectious particle. Synonymous deoptimization approaches have been applied to two important human viral pathogens, namely respiratory syncytial virus (RSV) and influenza A virus (IAV). This manuscript will briefly review the use of these different methods of synonymous recoding to generate attenuated RSV and IAV strains. It also will review the characterization of these vaccine candidates and in animal models, and describe several surprising findings with respect to phenotypic and genetic instability of some of these candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558635PMC
http://dx.doi.org/10.3389/fimmu.2019.01250DOI Listing

Publication Analysis

Top Keywords

synonymous recoding
12
viruses synonymous
8
genome recoding
8
rna viruses
8
will review
8
synonymous
6
recoding
6
attenuation human
4
human respiratory
4
viruses
4

Similar Publications

Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery.

View Article and Find Full Text PDF

Defining serine tRNA knockout as a strategy for effective repression of gene expression in organisms with a recoded genome.

Nucleic Acids Res

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.

Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.

View Article and Find Full Text PDF

Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene.

View Article and Find Full Text PDF

Learning from the Codon Table: Convergent Recoding Provides Novel Understanding on the Evolution of A-to-I RNA Editing.

J Mol Evol

August 2024

Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.

Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals.

View Article and Find Full Text PDF

Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!