Gait and balance impairments are frequently considered as the most significant concerns among individuals suffering from neurological diseases. Robot-assisted gait training (RAGT) has shown to be a promising neurorehabilitation intervention to improve gait recovery in patients following stroke or brain injury by potentially initiating neuroplastic changes. However, the neurophysiological processes underlying gait recovery through RAGT remain poorly understood. As non-invasive, portable neuroimaging techniques, electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) provide new insights regarding the neurophysiological processes occurring during RAGT by measuring different perspectives of brain activity. Due to spatial information about changes in cortical activation patterns and the rapid temporal resolution of bioelectrical changes, more features correlated with brain activation and connectivity can be identified when using fused EEG-fNIRS, thus leading to a detailed understanding of neurophysiological mechanisms underlying motor behavior and impairments due to neurological diseases. Therefore, multi-modal integrations of EEG-fNIRS appear promising for the characterization of neurovascular coupling in brain network dynamics induced by RAGT. In this brief review, we surveyed neuroimaging studies focusing specifically on robotic gait rehabilitation. While previous studies have examined either EEG or fNIRS with respect to RAGT, a multi-modal integration of both approaches is lacking. Based on comparable studies using fused EEG-fNIRS integrations either for guiding non-invasive brain stimulation or as part of brain-machine interface paradigms, the potential of this methodologically combined approach in RAGT is discussed. Future research directions and perspectives for targeted, individualized gait recovery that optimize the outcome and efficiency of RAGT in neurorehabilitation were further derived.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561323PMC
http://dx.doi.org/10.3389/fnhum.2019.00172DOI Listing

Publication Analysis

Top Keywords

gait recovery
12
eeg fnirs
8
robot-assisted gait
8
gait rehabilitation
8
neurological diseases
8
neurophysiological processes
8
fused eeg-fnirs
8
gait
7
ragt
7
brain
5

Similar Publications

Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.

Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.

View Article and Find Full Text PDF

Background: In osteoarthritis quadriceps strength is an important outcome to assess exercise capacity and recovery after arthroplasty. However, its measurement is limited due to lack of time and the need for trained personnel and equipment whose accuracy is verified.

Objectives: To find out the determinants of a reduced quadriceps strength and to establish a score to screen for it.

View Article and Find Full Text PDF

Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles.

Biomimetics (Basel)

November 2024

REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium.

Rehabilitation science has evolved significantly with the integration of technology-supported interventions, offering objective assessments, personalized programs, and real-time feedback for patients. Despite these advances, challenges remain in fully addressing the complexities of human recovery through the rehabilitation process. Over the last few years, there has been a growing interest in the application of biomimetics to inspire technological innovation.

View Article and Find Full Text PDF

Background: Unicompartmental knee arthroplasty (UKA) procedures have become much more common in the United States in recent years, with >40,000 UKAs performed annually. However, it is estimated that 10% to 40% of UKAs fail and thus require conversion to total knee arthroplasty (TKA). In the field of total joint arthroplasty, robotic-assisted surgeries have demonstrated advantages such as better accuracy and precision of implant positioning and improved restoration of a neutral mechanical axis.

View Article and Find Full Text PDF

Objective: To perform a systematic review of the utility of exoskeleton robotic therapy on lower extremity recovery in Spinal Cord Injury (SCI) patients.

Methods: We used the Embase, Cochrane, and PubMed databases and searched from to December 2023 for studies on exoskeleton robotic assist devices used in working with SCI patients. Only articles published in English were evaluated, and the retrieved articles were screened via our inclusion/exclusion criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!