Acoustic Cluster Therapy (ACT) is a two-component formulation of commercially available microbubbles (Sonazoid; GE Healthcare, Oslo, Norway) and microdroplets (perfluorated oil) currently under development for cancer treatment. The microbubbles and microdroplets have opposite surface charges to form microbubble/microdroplet clusters, which are administered to patients together with a drug. When the clusters and drug reach the target tumour, two ultrasound (US) exposure regimes are used: First, high-frequency (>2.0 MHz) US evaporates the oil and forms ACT bubbles that lodge at the microvascular level. Second, low-frequency (0.5 MHz) US induces stable mechanical oscillations of the ACT bubbles, causing localized micro-streaming, radiation and shear forces that increase the uptake of the drugs to the target tumour. This report describes the design and testing of a dual-frequency transducer and a laboratory setup for pre-clinical in vivo studies of ACT on murine tumour models. The dual-frequency transducer utilizes the 5th harmonic (2.7 MHz) and fundamental (0.5 MHz) of a single piezoceramic disk for the high-frequency and low-frequency regimes, respectively. Two different aperture radii are used to align the high-frequency and low-frequency beam maxima, and the high-frequency -3 dB beam width diameter is 6 mm, corresponding to the largest tumour sizes we expect to treat. The low-frequency -3 dB beam width extends 6 mm. Although unconventional, the 5th harmonic exhibit a 44% efficiency and can therefore be used for transmission of acoustic energy. Moreover, both in vitro and in vivo measurements demonstrate that the 5th harmonic can be used to evaporate the microbubble/microdroplet clusters. For the in vivo measurements, we used the kidneys of non-tumour-bearing mice as tumour surrogates. Based on this, the transducer is deemed suited for pre-clinical in vivo studies of ACT and replaces a cumbersome test setup consisting of two transducers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2019.04.008 | DOI Listing |
Ultrason Sonochem
December 2024
Ataturk University, Engineering Faculty, Environmental Engineering Department, Erzurum 25240, TÜRKİYE. Electronic address:
Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR).
View Article and Find Full Text PDFUltrason Sonochem
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Chemical process safety and equipment technology, Tianjin 300350, China. Electronic address:
Ultrasonic reactors, widely applied in process intensification, face limitations in their industrial application due to a lack of theoretical support for their structural design and optimization, particularly concerning the uniformity of the cavitation zone. Addressing this gap, our study introduces a novel approach to design a multi-frequency octagonal ultrasonic reactor of capacity 9.5 L through numerical simulation and spectrum analysis.
View Article and Find Full Text PDFUltrasonics
February 2025
School of Information Science and Technology, Fudan University, Shanghai 200433, China.
In Lamb wave imaging based on a phased array, higher frequencies narrowband excitation pulses enable more precise damage detection and localization. However, due to the size constraints of individual transducer elements, the spacing between array elements may exceed half the wavelength of the excitation signal. This can lead to a grating lobe effect.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Ultrasound Med Biol
January 2025
Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Objective: This paper describes the relationship between elastic tissue properties and strain and presents an initial investigation of pulse-echo ultrasound to measure two uncorrelated elastic parameters in tissue-mimicking phantoms. The two elastic parameters are the shear modulus, related to deformation of shape, and what we in the paper define as the nonlinear compressibility, related to deformation of volume.
Methods: We prepared tissue-mimicking phantoms containing lesions of variable shear modulus and variable nonlinear compressibility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!