This study investigated the feasibility of the methanogenic treatment of electronic industry wastewater containing tetramethylammonium hydroxide (TMAH), monoethanolamine (MEA) and sulfate in a lab-scale mesophilic up-flow anaerobic sludge blanket reactor. Feeding a mixture of electronic industry wastewater and co-substrate organics to the reactor for smooth acclimatization of sludge gave complete degradation of each organics within five days. When the reactor was fed only electronic industry wastewater, total COD removal, TMAH removal and MEA removal were achieved over 80, 99 and 99%, respectively, at an organic loading rate of 11.5 kg-COD mday. 173 mg-S L of influent sulfate was almost reduced simultaneously with the COD removal. In order to evaluate performance stability, the TMAH shock load event was performed under the conditions of 11,000 mg-COD L for 24 h. Inflow of high TMAH concentration inhibited TMAH degradation and sulfate reduction for more than one month, however, not MEA. The batch feeding experiment and specific activity measurement revealed degradation pathways of each organics. TMAH was degraded via methanogenic pathway without sulfate reduction, MEA was degraded via methanogenic pathway with sulfate reduction. The results indicated that methanogenic treatment was applicable to electronic industry wastewater by appropriate reactor handling.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2019.1631655DOI Listing

Publication Analysis

Top Keywords

electronic industry
20
industry wastewater
20
sulfate reduction
12
treatment electronic
8
mea sulfate
8
methanogenic treatment
8
cod removal
8
degraded methanogenic
8
methanogenic pathway
8
pathway sulfate
8

Similar Publications

Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.

View Article and Find Full Text PDF

Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.

View Article and Find Full Text PDF

A Case Study on Recycling Industrial Wastewater with Nanofiltration Membrane Separation Technology.

Membranes (Basel)

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.

As pressure on water resources intensifies and stringent regulations for groundwater and surface water are enacted, wastewater recycling has emerged as a key research objective for many enterprises. In this study, based on the actual wastewater discharged from Eternal Electronic (Suzhou, China) Co., Ltd.

View Article and Find Full Text PDF

Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials.

View Article and Find Full Text PDF

Deciphering Surface-Localized Structure of Nanodiamonds.

Nanomaterials (Basel)

December 2024

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!