In recent years, cellular senescence has generated a lot of interest among researchers because of its involvement in both the normal aging process and common human diseases. During senescence, cells undergo alterations that include telomere shortening, nuclear area enlargement, and genomic and mitochondrial DNA damage, leading to irreversible cell cycle arrest, and secretion of proinflammatory cytokines. Evidence suggests that the complex process of senescence is involved in the development of a plethora of chronic diseases including metabolic and inflammatory disorders and tumorigenesis. Recently, several human and animal studies have emphasized the involvement of senescence in the pathogenesis and development of liver steatosis including the progression to nonalcoholic steatohepatitis (NASH) as characterized by the additional emergence of inflammation, hepatocyte ballooning, and liver fibrosis. The development of nonalcoholic fatty liver disease (NAFLD) and its progression to NASH are commonly accompanied by several pathophysiological events including metabolic dysregulation and inflammatory phenomena occurring within the liver that may contribute to or derive from cellular senescence, implying that the latter may be both a stimulus and a consequence of the disease. Conclusion: In this review, we summarize the current literature on the impact of cellular senescence in NAFLD/NASH and discuss the effectiveness and safety of novel senolytic drugs and therapeutic options available to delay or treat the disease. Finally, we identify the open questions and issues to be addressed in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.30834DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
development nonalcoholic
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
progression nonalcoholic
8
nonalcoholic steatohepatitis
8
including metabolic
8
senescence
6
liver
5

Similar Publications

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!