Label-free Raman imaging of live osteosarcoma cells with multivariate analysis.

Appl Microbiol Biotechnol

Institute of Photonics and Photon-Technology, Northwest University, #229 North Taibai Road, Xi'an, 710069, Shaanxi, China.

Published: August 2019

Confocal Raman microspectral imaging (CRMI) is an advanced cell-imaging method that maps endogenous molecular compositions with their unique spectral fingerprint indicators. The aim of this work was to provide a visualized understanding of subcellular features of live osteosarcoma cells using a 532-nm laser excitation without the use of dyes or molecular probes. Both malignant osteoblast and spindle osteosarcoma cells derived from the BALB/c mouse osteosarcoma cell line K7M2 were investigated in this work. After preprocessing the obtained spectral dataset, K-means cluster analysis (KCA) is employed to reconstruct Raman spectroscopic maps of single biological cells by identifying regions of the cellular membrane, cytoplasm, organelles, and nucleus with their corresponding mean spectra. Principal component analysis (PCA) was further employed to indicate variables of significant influence on the separation of the spectra of each cellular component. The biochemical components of the two cell types were then extracted by showing the spectral and distribution features attributed to proteins, lipids, and DNA. Using this standardized CRMI technique and multivariate analysis approaches, the results obtained could be a sound foundation for a typical Raman imaging protocol of live cellular biomedical analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-09952-3DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
12
raman imaging
8
live osteosarcoma
8
multivariate analysis
8
analysis
5
label-free raman
4
imaging live
4
osteosarcoma
4
cells
4
cells multivariate
4

Similar Publications

Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism.

Biochim Biophys Acta Rev Cancer

December 2024

Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China; Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; School of Group Medicine and Public Health, Peking Union Medical College, Beijing 100091, China. Electronic address:

The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism.

View Article and Find Full Text PDF

Purpose: Despite the proven clinical benefits of cytokine therapy in cancer treatment, systemic administration of cytokines such as IL-12 is constrained by dose-limiting toxicities and short half-lives. To address these challenges, we explored a localized cytokine delivery strategy using engineered neoantigen-reactive T (NRT) cells as carriers in a murine model of osteosarcoma.

Materials And Methods: We used a neoantigen from K7M2 osteosarcoma cells to retrovirally transduce NRT cells to express an inducible form of IL-12.

View Article and Find Full Text PDF

Introduction: Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts younger individuals. Despite existing treatment approaches, patients with metastatic or recurrent disease generally face poor prognoses. A greater understanding of the tumor microenvironment (TME) is critical for enhancing outcomes in OS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!